1、直接上官方代码,调整过的,方可使用
package com.test import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.mllib.classification.{LogisticRegressionModel, LogisticRegressionWithLBFGS} import org.apache.spark.mllib.evaluation.MulticlassMetrics import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.util.MLUtils object logsitiRcongin { def main(args: Array[String]): Unit = { val conf = new SparkConf().setMaster("local").setAppName("df") val sc = new SparkContext(conf) // Load training data in LIBSVM format. val data = MLUtils.loadLibSVMFile(sc, "E:\spackLearn\spark-2.3.3-bin-hadoop2.7\data\mllib\sample_libsvm_data.txt") // Split data into training (60%) and test (40%). val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L) val training = splits(0).cache() val test = splits(1) // Run training algorithm to build the model val model = new LogisticRegressionWithLBFGS() .setNumClasses(10) .run(training) // Compute raw scores on the test set. val predictionAndLabels = test.map { case LabeledPoint(label, features) => val prediction = model.predict(features) (prediction, label) } // Get evaluation metrics. val metrics = new MulticlassMetrics(predictionAndLabels) val accuracy = metrics.accuracy println(s"最后的得分:Accuracy = $accuracy") // Save and load model model.save(sc, "data/model/scalaLogisticRegressionWithLBFGSModel") val sameModel = LogisticRegressionModel.load(sc, "data/model/scalaLogisticRegressionWithLBFGSModel") while (true){ } } }
最后查看任务调度