python实现区间转换、numpy图片数据转换
需求:
客户的需求是永无止境的,这不?前几天,用户提出了一个需求,需要将一组数据从一个区间缩放到另一区间?
思路:
先将数据归一化,再乘以对应区间的差加上对于区间下限。
数据归一化的公式:
# 区间变换 def unification_interval(data,interval_min,interval_max): # data :需要变换的数据或矩阵 # interval_min :变换区间下限。 # interval_max :变换区间上限。 import numpy as np data = np.array(data) n,m = data.shape minval = np.min(np.min(data)) maxval = np.max(np.max(data)) for i in range(n): for j in range(m): data[i,j] = (data[i,j]-minval)/(maxval-minval) return data*(interval_max-interval_min)+interval_min
# 整形的转换
def Inter(data): import numpy as np data = np.array(data) n,m = data.shape for i in range(n): for j in range(m): data[i,j] = int(data[i,j]) return data
# coding:utf-8 import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy.misc import imresize # 区间变换 def unification_interval(data,interval_min,interval_max): # data :需要变换的数据或矩阵 # interval_min :变换区间下限。 # interval_max :变换区间上限。 import numpy as np data = np.array(data) n,m = data.shape minval = np.min(np.min(data)) maxval = np.max(np.max(data)) for i in range(n): for j in range(m): data[i,j] = (data[i,j]-minval)/(maxval-minval) return data*(interval_max-interval_min)+interval_min def Inter(data): import numpy as np data = np.array(data) n,m = data.shape for i in range(n): for j in range(m): data[i,j] = int(data[i,j]) return data # 图片读入 img_data = pd.read_csv('./data/milliq.csv',header=0,index_col=0,sep=',') # print(np.max(np.max(img_data))) # print(np.min(np.min(img_data))) data = Inter(img_data) imgData = unification_interval(data,0,255) # print(np.max(np.max(imgData)),np.min(np.min(imgData))) data = imresize(data,[200,200]) plt.imshow(data,cmap='gray') plt.show()