下面给大家一起分享使用KMeans自动聚类,压缩图片像素点。每种图片可能他们的维度都不同,比如jpg一共有(w,h,3)三维,但是灰度图只有一维(w,h,1),也有四维的图片(w,h,4)等等。我们可以将这些不同维度的图片映射到一维的空间中。拿三维图片来做解释吧,三维图有rgb三种颜色,首先把每个点r、g、b三个颜色数值提取转换为(w*h,3),然后使用KMeans训练自动聚类模型,把转换过后的图片矩阵喂入模型得出不同的类别。再找到类别中心点,然后重新创建图片矩阵。代码如下所示:
# coding:utf-8 import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import KMeans from sklearn.utils import shuffle from sklearn.datasets import load_sample_image imgData = load_sample_image('china.jpg') # imgData = plt.imread('./img/img.png') # ./img/timg.jpg plt.figure('image1');plt.xticks([]);plt.yticks([]) plt.imshow(imgData) # 压缩图片 def im_resize(imgData,pixel=8): w,h,rgb = imgData.shape img = 0 if rgb==3 or rgb == 1: img = np.array(imgData,dtype=float)/255 else: img = imgData img1 = img.reshape(-1,rgb) x_train = shuffle(img1) # 聚类模型建立 kmeans = KMeans(n_clusters=pixel) kmeans.fit(x_train[:2000,:]) # 分别对原始图片进行分类 x_class = kmeans.predict(img1) # 类别的中心点 cluster_center = kmeans.cluster_centers_ image = np.zeros([w,h,rgb]) n = 0 for i in range(w): for j in range(h): index = x_class[n] rgbColor = cluster_center[index,:] image[i,j] = rgbColor n+=1 return image image_new = im_resize(imgData,pixel=16) print(image_new.shape) plt.figure('image2') plt.imshow(image_new) plt.xticks([]);plt.yticks([]) plt.show()