算法导论在计算几何学这章给出了最近顶点对的求法:采用典型的分治算法
(1)分解:将所有顶点按照x坐标排序后大致分为俩个大小相等的集合L和R
(2)求解:分别求出L和R集合中的最小具体,并取二者的较小值为当前的最小值ans
(3)合并:对于分属于两个集合的点,每次各取出一个点,计算两点的距离,每次与ans比较去较小值来更新ans的值,并且可以进行优化,具体的优化步骤一共有3个,具体见算法导论。
算法的运行时间为O(n log n),具体代码如下:
#include <cstdio> #include <algorithm> #include <cmath> using namespace std; int const MAX_N = 100005; struct Point{ double x, y; }; Point p[MAX_N]; int yy[MAX_N]; bool cmpx(Point const& pa, Point const& pb) { return pa.x < pb.x; } bool cmpy(int const& a, int const& b) { return p[a].y < p[b].y; } inline double dis(Point const& pa, Point const& pb) { return sqrt((pa.x - pb.x) * (pa.x - pb.x) + (pa.y - pb.y) * (pa.y - pb.y)); } inline double min(double const& a, double const& b) { return a < b ? a : b; } double closeset(int low, int high) { if(low + 1 == high) { return dis(p[low], p[high]); } if(low + 2 == high) { return min(dis(p[low], p[high]), min(dis(p[low], p[low + 1]), dis(p[low + 1], p[high]))); } int mid = (low + high) >> 1; double ans = min(closeset(low, mid), closeset(mid + 1, high)); int cnt = 0; for(int i = low; i <= high; i++) { if(p[i].x > p[mid].x - ans && p[i].x < p[mid].x + ans) { yy[cnt++] = i; } } sort(yy, yy + cnt, cmpy); for(int i = 0; i < cnt; i++) { int k = (i + 7) > cnt ? cnt : (i + 7); for(int j = i + 1; j < k; j++) { if(p[yy[j]].y - p[yy[j]].y >= ans) break; ans = min(ans, dis(p[yy[j]], p[yy[i]])); } } return ans; } int main() { //freopen("min.txt", "r", stdin); int n, i; while(scanf("%d", &n) != EOF) { if(!n) break; for(i = 0; i < n; i++) { scanf("%lf %lf", &p[i].x, &p[i].y); } sort(p, p + n, cmpx); double ans = closeset(0, n - 1); printf("%.2lf ", ans); } return 0; }