zoukankan      html  css  js  c++  java
  • 【Spark调优】聚合操作数据倾斜解决方案

    【使用场景】

      对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,经过sample或日志、界面定位,发生了数据倾斜。

    【解决方案】

      局部聚合+全局聚合,进行两阶段聚合。具体为:

      将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task处理的数据分散到多个task上去做局部聚合,进而解决单个task处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以得到最终的结果。

    •   第一步:给key倾斜的dataSkewRDD中每个key都打上一个随机前缀。 

      例如10以内的随机数,此时原先一样的key,包括集中倾斜的key就变成不一样的了,比如(hello, 1) (hello, 1) (hello, 1) (hello, 1),就会变成(5_hello, 1) (3_hello, 1) (3_hello, 1) (5_hello, 1) (8_hello, 1) (5_hello, 1) ...  

    •   第二步:对打上随机前缀的key不再倾斜的randomPrefixRdd进行局部聚合。

      接着对打上随机数后的数据,执行reduceByKey等聚合操作,进行局部聚合时,就不会数据倾斜了。此时,第一步局部聚合的结果,变成了(5_hello, 3) (3_hello, 2) (8_hello, 1)

    •   第三步:局部聚合后,去除localAggRdd中每个key的随机前缀。

      此时,第二步局部聚合的结果,变成了(hello, 3) (hello, 2) (hello, 1)

    •   第四步:对去除了随机前缀的removeRandomPrefixRdd进行全局聚合。

      得到最终结果(hello, 6)

     

    【方案优点

      对于聚合类的shuffle操作导致的数据倾斜,效果不错,通常都可以解决数据倾斜问题,至少大幅缓解数据倾斜,将Spark作业的性能提升数倍以上。

     

    【代码实现】

      代码实现:https://github.com/wwcom614/Spark

      Java版实现

      Scala版实现 

  • 相关阅读:
    洛谷P3003 [USACO10DEC]苹果交货Apple Delivery
    洛谷P1576 最小花费
    洛谷P1821 [USACO07FEB]银牛派对Silver Cow Party
    洛谷P1948 [USACO08JAN]电话线Telephone Lines
    洛谷P3371【模板】单源最短路径
    洛谷P2384最短路
    FirstOfAll
    Proxy模式:管理第三方API
    Abstract Server模式,Adapter模式和Bridge模式
    Observer模式
  • 原文地址:https://www.cnblogs.com/wwcom123/p/10582146.html
Copyright © 2011-2022 走看看