给定一个由 0 和 1 组成的矩阵,找出每个元素到最近的 0 的距离。
两个相邻元素间的距离为 1 。
示例 1:
输入:
0 0 0
0 1 0
0 0 0
输出:
0 0 0
0 1 0
0 0 0
示例 2:
输入:
0 0 0
0 1 0
1 1 1
输出:
0 0 0
0 1 0
1 2 1
注意:
- 给定矩阵的元素个数不超过 10000。
- 给定矩阵中至少有一个元素是 0。
- 矩阵中的元素只在四个方向上相邻: 上、下、左、右。
BFS
我们可以首先遍历一次矩阵,将值为0的点都存入queue,将值为1的点改为INT_MAX。
然后开始BFS遍历,从queue中取出一个数字,遍历其周围四个点,如果越界或者周围点的值小于等于当前值加1,则直接跳过。
因为周围点的距离更小的话,就没有更新的必要,否则将周围点的值更新为当前值加1,然后把周围点的坐标加入queue,参见代码如下:
c++
class Solution {
public:
vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) {
int m = matrix.size(), n = matrix[0].size();
vector<vector<int>> dirs{{0,-1},{-1,0},{0,1},{1,0}};
queue<pair<int, int>> q;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == 0) q.push({i, j});
else matrix[i][j] = INT_MAX;
}
}
while (!q.empty()) {
auto t = q.front(); q.pop();
for (auto dir : dirs) {
int x = t.first + dir[0], y = t.second + dir[1];
if (x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] <= matrix[t.first][t.second] + 1) continue;
matrix[x][y] = matrix[t.first][t.second] + 1;
q.push({x, y});
}
}
return matrix;
}
};
动态规划
首先建立一个和matrix大小相等的矩阵res,初始化为很大的值,这里我们用INT_MAX-1。
然后我们遍历matrix矩阵,当遇到为0的位置,我们将结果res矩阵的对应位置也设为0。
然后就是这个解法的精髓了,如果不是0的地方,我们在第一次扫描的时候,比较其左边和上边的位置,取其中较小的值,再加上1,来更新结果res中的对应位置。
如果初始化为INT_MAX就会整型溢出,不过放心,由于是取较小值,res[i][j]永远不会取到INT_MAX,所以不会有再加1溢出的风险。
第一次遍历我们比较了左和上的方向,那么我们第二次遍历就要比较右和下的方向,注意两种情况下我们不需要比较,一种是当值为0时,还有一种是当值为1时,这两种情况下值都不可能再变小了,所以没有更新的必要,参见代码如下:
c++
class Solution {
public:
vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) {
int m = matrix.size(), n = matrix[0].size();
vector<vector<int>> res(m, vector<int>(n, INT_MAX - 1));
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == 0) res[i][j] = 0;
else {
if (i > 0) res[i][j] = min(res[i][j], res[i - 1][j] + 1);
if (j > 0) res[i][j] = min(res[i][j], res[i][j - 1] + 1);
}
}
}
for (int i = m - 1; i >= 0; --i) {
for (int j = n - 1; j >= 0; --j) {
if (res[i][j] != 0 && res[i][j] != 1) {
if (i < m - 1) res[i][j] = min(res[i][j], res[i + 1][j] + 1);
if (j < n - 1) res[i][j] = min(res[i][j], res[i][j + 1] + 1);
}
}
}
return res;
}
};
python
class Solution:
def updateMatrix(self, matrix: List[List[int]]) -> List[List[int]]:
for i in range(len(matrix)):
for j in range(len(matrix[0])):
l,t= 10001,10001
if matrix[i][j] != 0:
if i > 0:
t = matrix[i - 1][j]
if j > 0:
l = matrix[i][j - 1]
matrix[i][j] = min(l,t) + 1
for i in range(len(matrix) - 1, -1 ,-1):
for j in range(len(matrix[0]) - 1, -1, -1):
r,b = 10001,10001
if matrix[i][j] != 0:
if i < len(matrix) - 1:
b = matrix[i + 1][j]
if j < len(matrix[0]) - 1:
r = matrix[i][j + 1]
matrix[i][j] = min(matrix[i][j], min(r,b) + 1)
return matrix