zoukankan      html  css  js  c++  java
  • 并查集

    并查集

    并查集是一种树型的数据结构 ,并查集可以高效地进行如下操作:

    • 查询元素p和元素q是否属于同一组

    • 合并元素p和元素q所在的组

    image-20210826104057175

    并查集结构

    并查集也是一种树型结构,但这棵树跟我们之前讲的二叉树、红黑树、B树等都不一样,这种树的要求比较简单:

    1. 每个元素都唯一的对应一个结点;
    2. 每一组数据中的多个元素都在同一颗树中;
    3. 一个组中的数据对应的树和另外一个组中的数据对应的树之间没有任何联系;
    4. 元素在树中并没有子父级关系的硬性要求;

    image-20210826104304957

    并查集的实现

    并查集的API设计

    类名 UF
    构造方法 UF(int N):初始化并查集,以整数标识(0,N-1)个结点
    成员方法 1.public int count():获取当前并查集中的数据有多少个分组
    2.public boolean connected(int p,int q):判断并查集中元素p和元素q是否在同一分组中
    3.public int find(int p):元素p所在分组的标识符
    4.public void union(int p,int q):把p元素所在分组和q元素所在分组合并
    成员变量 1.private int[] eleAndGroup: 记录结点元素和该元素所在分组的标识
    2.private int count:记录并查集中数据的分组个数

    并查集的实现

    并查集的实现

    构造方法实现:

    1. 初始情况下,每个元素都在一个独立的分组中,所以,初始情况下,并查集中的数据默认分为N个组;
    2. 初始化数组eleAndGroup;
    3. 把eleAndGroup数组的索引看做是每个结点存储的元素,把eleAndGroup数组每个索引处的值看做是该结点 所在的分组,那么初始化情况下,i索引处存储的值就是i

    image-20210826105149021

    union(int p,int q)合并方法实现:

    1. 如果p和q已经在同一个分组中,则无需合并
    2. 如果p和q不在同一个分组,则只需要将p元素所在组的所有的元素的组标识符修改为q元素所在组的标识符即可
    3. 分组数量-1

    image-20210826110436960

    代码实现:

    /**
     * @author wen.jie
     * @date 2021/8/26 10:52
     * 并查集
     */
    public class UF {
    
        private int[] eleAndGroup;
    
        private int count;
    
        public UF(int N) {
            this.count = N;
            this.eleAndGroup = new int[N];
            //初始化eleAndGroup中的元素及其所在的组的标识符
            for (int i = 0; i < eleAndGroup.length; i++)
                eleAndGroup[i] = i;
        }
    
        //分组的个数
        public int count() {
            return count;
        }
    
        //元素p所在分组的标识符
        public int find(int p) {
            return eleAndGroup[p];
        }
    
        //判断并查集中元素p和元素q是否在同一个分组中
        public boolean connected(int p, int q) {
            return find(p) == find(q);
        }
    
        //把p元素所在分组和q元素所在分组合并
        public void union(int p, int q){
            if (connected(p, q))
                return;
    
            int pGroup = find(p);
            int qGroup = find(q);
    
            //让p所在分组的所有元素的组标识符转换为q所在分组的标识符
            for (int i = 0; i < eleAndGroup.length; i++) {
                if(eleAndGroup[i] == pGroup){
                    eleAndGroup[i] = qGroup;
                }
            }
            count--;
        }
    
        public void print(){
            System.out.println(Arrays.toString(eleAndGroup));
        }
    
    }
    

    测试:

        public static void main(String[] args) {
            UF uf = new UF(5);
    
            Scanner scanner = new Scanner(System.in);
            while (true) {
                System.out.println("请输入第一个要合并的元素:");
                int p = scanner.nextInt();
                System.out.println("请输入第二个要合并的元素:");
                int q = scanner.nextInt();
                if(uf.connected(p, q)){
                    System.out.println(q+"和"+p+"已经在一个组中了");
                    continue;
                }
                uf.union(p, q);
                uf.print();
                System.out.println("还有"+uf.count()+"个分组");
            }
        }
    

    image-20210826134052846

    UF_Tree算法优化

    为了提升union算法的性能,我们需要重新设计find方法和union方法的实现,此时我们先需要对我们的之前数据结构中的eleAndGourp数组的含义进行重新设定:

    1.我们仍然让eleAndGroup数组的索引作为某个结点的元素;

    2.eleAndGroup[i]的值不再是当前结点所在的分组标识,而是该结点的父结点;

    image-20210826134333505

    代码实现

    find(int p)查询方法实现

    1.判断当前元素p的父结点eleAndGroup[p]是不是自己,如果是自己则证明已经是根结点了;

    2.如果当前元素p的父结点不是自己,则让p=eleAndGroup[p],继续找父结点的父结点,直到找到根结点为止;

    image-20210826134635201

    union(int p,int q)合并方法实现

    1. 找到p元素所在树的根结点
    2. 找到q元素所在树的根结点
    3. 如果p和q已经在同一个树中,则无需合并;
    4. 如果p和q不在同一个分组,则只需要将p元素所在树根结点的父结点设置为q元素的根结点即可;
    5. 分组数量-1
    image-20210826135134742

    代码

    /**
     * @author wen.jie
     * @date 2021/8/26 10:52
     * 并查集
     */
    public class UF_Tree {
    
        private int[] eleAndGroup;
    
        private int count;
    
        public UF_Tree(int N) {
            this.count = N;
            this.eleAndGroup = new int[N];
            //初始化eleAndGroup中的元素及其所在的组的标识符
            for (int i = 0; i < eleAndGroup.length; i++)
                eleAndGroup[i] = i;
        }
    
        //分组的个数
        public int count() {
            return count;
        }
    
        //元素p所在分组的标识符
        public int find(int p) {
            while (true) {
                if(p == eleAndGroup[p]) {
                    return p;
                }
                p = eleAndGroup[p];
            }
        }
    
        //判断并查集中元素p和元素q是否在同一个分组中
        public boolean connected(int p, int q) {
            return find(p) == find(q);
        }
    
        //把p元素所在分组和q元素所在分组合并
        public void union(int p, int q){
            int pRoot = find(p);
            int qRoot = find(q);
            if(pRoot == qRoot) return;
            eleAndGroup[pRoot] = qRoot;
            count--;
        }
    
        public void print(){
            System.out.println(Arrays.toString(eleAndGroup));
        }
    
    }
    

    测试:

            UF_Tree uf = new UF_Tree(5);
    
            Scanner scanner = new Scanner(System.in);
            while (true) {
                System.out.println("请输入第一个要合并的元素:");
                int p = scanner.nextInt();
                System.out.println("请输入第二个要合并的元素:");
                int q = scanner.nextInt();
                if(uf.connected(p, q)){
                    System.out.println(q+"和"+p+"已经在一个组中了");
                    continue;
                }
                uf.union(p, q);
                uf.print();
                System.out.println("还有"+uf.count()+"个分组");
            }
    

    image-20210826135606600

    性能分析

    我们优化后的算法union,如果要把并查集中所有的数据连通,仍然至少要调用N-1次union方法,但是,我们发现 union方法中已经没有了for循环,所以union算法的时间复杂度由O(N^2)变为了O(N)。

    但是这个算法仍然有问题,因为我们之前不仅修改了union算法,还修改了find算法。我们修改前的find算法的时 间复杂度在任何情况下都为O(1),但修改后的find算法在最坏情况下是O(N):

    image-20210826135846824

    在union方法中调用了find方法,所以在最坏情况下union算法的时间复杂度仍然为O(N^2)。

    路径压缩

    UF_Tree中最坏情况下union算法的时间复杂度为O(N^2),其最主要的问题在于最坏情况下,树的深度和数组的大小一样,如果我们能够通过一些算法让合并时,生成的树的深度尽可能的小,就可以优化find方法。

    之前我们在union算法中,合并树的时候将任意的一棵树连接到了另外一棵树,这种合并方法是比较暴力的,如果 我们把并查集中每一棵树的大小记录下来,然后在每次合并树的时候,把较小的树连接到较大的树上,就可以减小树的深度。

    image-20210826140044286

    只要我们保证每次合并,都能把小树合并到大树上,就能够压缩合并后新树的路径,这样就能提高find方法的效率。为了完成这个需求,我们需要另外一个数组来记录存储每个根结点对应的树中元素的个数,并且需要一些代码调整数组中的值。

    代码实现

    /**
     * @author wen.jie
     * @date 2021/8/26 10:52
     * 并查集
     */
    public class UF_Tree_Weighted {
    
        private int[] eleAndGroup;
    
        private int count;
    
        //用来存储每一个根节点对应的树中保存的节点的个数
        private int[] sz;
    
        public UF_Tree_Weighted(int N) {
            this.count = N;
            this.eleAndGroup = new int[N];
            this.sz = new int[N];
            //初始化eleAndGroup中的元素及其所在的组的标识符
            for (int i = 0; i < eleAndGroup.length; i++)
                eleAndGroup[i] = i;
    
            Arrays.fill(sz, 1);
        }
    
        //分组的个数
        public int count() {
            return count;
        }
    
        //元素p所在分组的标识符
        public int find(int p) {
            while (true) {
                if(p == eleAndGroup[p]) {
                    return p;
                }
                p = eleAndGroup[p];
            }
        }
    
        //判断并查集中元素p和元素q是否在同一个分组中
        public boolean connected(int p, int q) {
            return find(p) == find(q);
        }
    
        //把p元素所在分组和q元素所在分组合并
        public void union(int p, int q){
            int pRoot = find(p);
            int qRoot = find(q);
            if(pRoot == qRoot) return;
    
            //判断树的大小
            if(sz[pRoot] < sz[qRoot]) {
                eleAndGroup[pRoot] = qRoot;
                sz[qRoot] += sz[pRoot];
            } else {
                eleAndGroup[qRoot] = pRoot;
                sz[pRoot] += sz[qRoot];
            }
            count--;
        }
    
        public void print(){
            System.out.println("eleAndGroup:"+Arrays.toString(eleAndGroup));
            System.out.println("sz:"+Arrays.toString(sz));
        }
    
    }
    

    测试:

            UF_Tree_Weighted uf = new UF_Tree_Weighted(5);
    
            Scanner scanner = new Scanner(System.in);
            while (true) {
                System.out.println("请输入第一个要合并的元素:");
                int p = scanner.nextInt();
                System.out.println("请输入第二个要合并的元素:");
                int q = scanner.nextInt();
                if(uf.connected(p, q)){
                    System.out.println(q+"和"+p+"已经在一个组中了");
                    continue;
                }
                uf.union(p, q);
                uf.print();
                System.out.println("还有"+uf.count()+"个分组");
            }
    

    image-20210826141501748

    案例-畅通工程

    某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?

    image-20210826141627549

    总共有20个城市,目前已经修改好了7条道路,问还需要修建多少条道路,才能让这20个城市之间全部相通?

    思路:

    1.创建一个并查集UF_Tree_Weighted(20);

    2.分别调用union(0,1),union(6,9),union(3,8),union(5,11),union(2,12),union(6,10),union(4,8),表示已经修建好的道路把对应的城市连接起来;

    3.如果城市全部连接起来,那么并查集中剩余的分组数目为1,所有的城市都在一个树中,所以,只需要获取当前并查集中剩余的数目,减去1,就是还需要修建的道路数目;

    代码实现:

        @Test
        public void test(){
            UF_Tree_Weighted uf = new UF_Tree_Weighted(20);
            uf.union(0,1);
            uf.union(6,9);
            uf.union(3,8);
            uf.union(5,11);
            uf.union(2,12);
            uf.union(6,10);
            uf.union(4,8);
            int road = uf.count();
            System.out.println(road-1);
        }
    

    image-20210826142407910

    本文代码已上传至:https://gitee.com/wj204811/algorithm

  • 相关阅读:
    功能检查和降级
    蓄水池问题
    Linux删除大于/小于固定大小的文件等
    理解Faster-RCNN 中的Anchor
    【转】DBSCAN密度聚类算法
    ROC曲线和PR曲线
    LSTM比较RNN
    【转】ROI Pooling
    【转】VGG网络结构及参数
    面试知识点准备(各方面)
  • 原文地址:https://www.cnblogs.com/wwjj4811/p/15189349.html
Copyright © 2011-2022 走看看