(1) 设计要点
1、为简化输出,环序列简化为一般序列输出,为避免重复,约定首项为“1”。
2、环中的每一项为一个数字,相连的8项构成一个8位数。因而设置a循环在没有重复数字数字且以“1”开头的8位数12345678——18765432中枚举。注意到所有1——8没有重复数字的8位数的数字和为9的倍数,该数也为9的倍数,为此,枚举循环步长可取9,以精简枚举次数。
为操作与判断方便,设置3个数组:
f数组统计8位数a中各个数字的频数。如f[3]=2,即a中有2个数字“3”。
g数组表示8位数a中每位数的数字。如g[4]=6,即a的从高位开始第4位数为数字“6”。
b数组标记整数x是否为素数。如b[13]=1,标识“1”表示13为素数,标识“0”为非素数。
枚举实施:
1) 注意到8项中每相邻两项之和不超过15,对15以内的5个素数用b数组标注“1”,其余均为“0”。
2) 在8位数的a 循环中,对a实施8次求余分离出各个数字x,应用f[x]++统计数字x的频数,应用g[9-k]=x记录a的各位数字。
3) 设置k(1——8)判断循环:
若f[k]!=1 ,表明数字k出现重复或遗漏,返回。
若 b[g[k]+g[k+1]]!=1,表明相邻的第k项与第k+1项之和不是素数,返回。顺便说明,为判断方便,首项“1”先行赋值给g[9],以与g[8]相邻,在k循环中一道进行判别。
4) 通过以上判断筛选的a,其各个数字即为所求的8项素数环的各项,打印输出。
package com.lanxi.demo1; import java.util.*; public class SuShu{ public static void main(String arg[]) { int count=0; int t,k,s,x; int[] g=new int[10]; int[] f=new int[10]; int[] b=new int[19]; long a,y; for(k=1;k<=15;k++) b[k]=0; g[9]=1;s=0; b[3]=b[5]=b[7]=b[11]=b[13]=1; // 5个奇素数标记 System.out.println("8项素数和环:"); for(a=12345678;a<=18765432;a+=9) // 步长为9枚举8位数 {t=0;y=a; for(k=0;k<=9;k++) f[k]=0; for(k=1;k<=8;k++) { x=(int)y%10;f[x]++; // 分离a的8个数字,用f数组统计x的个数 g[9-k]=x; // 用g数组记录a的第k位数字 y=y/10; count++; } for(k=1;k<=8;k++) if(f[k]!=1 || b[g[k]+g[k+1]]!=1) t=1; if(t==1) continue; // 有相同数字或相邻和非素,返回 s++; System.out.print(s+": 1,"); // 输出8项素数和环 for(k=2;k<=8;k++) System.out.print(g[k]+","); System.out.println(""); } System.out.println("循环次数:"+count); } }