zoukankan      html  css  js  c++  java
  • 基于mykernel 2.0编写一个操作系统内核

    ------------恢复内容开始------------

    一、实验要求

    1. 按照https://github.com/mengning/mykernel 的说明配置mykernel 2.0,熟悉Linux内核的编译;
    2. 基于mykernel 2.0编写一个操作系统内核,参照https://github.com/mengning/mykernel提供的范例代码;
    3. 简要分析操作系统内核核心功能及运行工作机制。

    二。本机环境:VMware Workstation+虚拟机Ubuntu 18.04.4 LTS amd64。

    三、实验步骤:

    1)下载Linux内核并进行配置、运行:

    wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch(这一步从群里下载直接复制过来即可)
    sudo apt install axel
    axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz
    xz -d linux-5.4.34.tar.xz
    tar -xvf linux-5.4.34.tar
    cd linux-5.4.34
    patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch
    sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev
    make defconfig # Default configuration is based on 'x86_64_defconfig'
    make -j$(nproc)
    sudo apt install qemu # install QEMU
    qemu-system-x86_64 -kernel arch/x86/boot/bzImage

    2)模拟器运行结果如下:

     就可以看到QEMU窗⼝输出的内容的代码mymain.c和myinterrupt.c ,当前有⼀个虚拟的CPU执⾏C代码的上下⽂环境,可以看到mymain.c中的代码在不停地执⾏。同时有⼀个中断处理程序的上下⽂环境,周期性地产⽣的时钟中断信号,能够触发myinterrupt.c中的代码。这样就通过Linux内核代码模拟了⼀个具有时钟中断和C代码执⾏环境的硬件平台。

    打开mykernel文件夹下的mymain.c以及myinterrupt.c文件,可以看到里面的代码有如下几段:

    mymain.c中是一个死循环,不断输出"my_start_kernel here %d ",myinterrupt.c中则不断输出时钟中断"my_timer_handler here"。而根据之前qemu的运行结果,可以看出进程和时钟中断不断的交替运行。而我们要做的事情就是写一个自己的进程控制块以及进程调度算法,从而实现模拟多个进程调度运行。

    void __init my_start_kernel(void)
    {
        int i = 0;
        while(1)
        {
            i++;
            if(i%100000 == 0)
                printk(KERN_NOTICE "my_start_kernel here  %d 
    ",i);
        }
    }
    

      

    void my_timer_handler(void)
    {
        printk(KERN_NOTICE "
    >>>>>>>>>>>>>>>>>my_timer_handler here<<<<<<<<<<<<<<<<<<
    
    ");
    }

    3)基于mykernel 2.0编写一个操作系统内核,参照https://github.com/mengning/mykernel 提供的范例代码

    a.首先在mykernel目录下增加一个mypcb.h 头文件,用来定义进程控制块(Process Control Block),也就是进程结构体的定义,在Linux内核中是struct tast_struct结构体

    #define MAX_TASK_NUM        4
    #define KERNEL_STACK_SIZE   1024*8                 //进程堆栈大小
    
    /* CPU-specific state of this task */
    struct Thread {                        //存储ip,sp
        unsigned long ip;
        unsigned long sp;
    };
    
    typedef struct PCB{
        int pid;                //进程的id
        volatile long state;    //表示进程的状态,-1表示就绪状态,0表示运行状态,1表示阻塞状态
        char stack[KERNEL_STACK_SIZE];    //内核堆栈
        /* CPU-specific state of this task */
        struct Thread thread;
        unsigned long task_entry;        //指定的进程入口,平时入口为main函数
        struct PCB *next;                //指向下一个进程控制块的指针,进程控制块间用链表连接
    }tPCB;
    
    void my_schedule(void);         //函数调度

    b对mymain.c中的my_start_kernel函数进行修改,并在mymain.c中实现了my_process函数,用来作为进程的代码模拟一个个进程,时间片轮转调度:

    #include "mypcb.h"
    
    
    tPCB task[MAX_TASK_NUM];
    tPCB * my_current_task = NULL;
    volatile int my_need_sched = 0;
    
    
    void my_process(void);
    
    
    void __init my_start_kernel(void)
    {
        int pid = 0;
        int i;
        /* Initialize process 0*/
        task[pid].pid = pid;
        task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
        task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
        task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
        task[pid].next = &task[pid];
        /*fork more process */
        for(i=1;i<MAX_TASK_NUM;i++)
        {
            memcpy(&task[i],&task[0],sizeof(tPCB));
            task[i].pid = i;
            task[i].state = -1;
            task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
            task[i].next = task[i-1].next;
            task[i-1].next = &task[i];
        }
        /* start process 0 by task[0] */
        pid = 0;
        my_current_task = &task[pid];
        asm volatile(
            "movq %1,%%rsp
    	"  /* set task[pid].thread.sp to rsp */
            "pushq %1
    	"          /* push rbp */
            "pushq %0
    	"          /* push task[pid].thread.ip */
            "ret
    	"              /* pop task[pid].thread.ip to rip */
            :
            : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)   /* input c or d mean %ecx/%edx*/
        );
    }
    
    void my_process(void)
    {
        int i = 0;
        while(1)
        {
            i++;
            if(i%10000000 == 0)
            {
                printk(KERN_NOTICE "this is process %d -
    ",my_current_task->pid);
                if(my_need_sched == 1)
                {
                    my_need_sched = 0;
                    my_schedule();
                }
                printk(KERN_NOTICE "this is process %d +
    ",my_current_task->pid);
            }
        }
    }

    c.对myinterrupt.c的修改,my_timer_handler用来记录时间片,时间片消耗完之后完成调度。并在该文件中完成,my_schedule(void)函数的实现:

    #include "mypcb.h"
    
    
    extern tPCB task[MAX_TASK_NUM];
    extern tPCB * my_current_task;
    extern volatile int my_need_sched;
    volatile int time_count = 0;
    
    
    /*
     * Called by timer interrupt.
     */
    void my_timer_handler(void)
    {
        if(time_count%1000 == 0 && my_need_sched != 1)
        {
            printk(KERN_NOTICE ">>>my_timer_handler here<<<
    ");
            my_need_sched = 1;
        }
        time_count ++ ;
        return;
    }
    
    
    void my_schedule(void)
    {
        tPCB * next;
        tPCB * prev;
    
    
        if(my_current_task == NULL
            || my_current_task->next == NULL)
        {
          return;
        }
        printk(KERN_NOTICE ">>>my_schedule<<<
    ");
        /* schedule */
        next = my_current_task->next;
        prev = my_current_task;
        if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
        {
          my_current_task = next;
          printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);
          /* switch to next process */
          asm volatile(
             "pushq %%rbp
    	"       /* save rbp of prev */
             "movq %%rsp,%0
    	"     /* save rsp of prev */
             "movq %2,%%rsp
    	"     /* restore  rsp of next */
             "movq $1f,%1
    	"       /* save rip of prev */
             "pushq %3
    	"
             "ret
    	"               /* restore  rip of next */
             "1:	"                  /* next process start here */
             "popq %%rbp
    	"
            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            : "m" (next->thread.sp),"m" (next->thread.ip)
          );
        }
        return;
    }

    4)重新编译(linux 目录下make命令),再次运行,查看运行结果,可以看见进程的切换

    结果如下:

    四。简要分析操作系统内核核心功能及运行工作机制

    系统工作机制简要分析:

    系统启动后,首先运行mymain.c中的my_start_kernel函数,里面是一个while(1) 循环,永远执行下去。

    然后是myinterrupt.c,里面的my_timer_handler 函数会被内核周期性的调用,每调用1000次,就去将全局变量my_need_sched的值修改为1,my_start_kernel中的while循环发现my_need_sched值变为1后,就进行进程的调度,完成进程的切换,如此往复。

    进程切换核心代码分析:

    asm volatile(
             "pushq %%rbp
    	"       /* 1 save rbp of prev */ 
             "movq %%rsp,%0
    	"     /* 2 save rsp of prev */
             "movq %2,%%rsp
    	"     /* 3 restore  rsp of next */
             "movq $1f,%1
    	"       /* 4 save rip of prev */
             "pushq %3
    	"        /* 5 save rip of next */   
             "ret
    	"               /* 6 restore  rip of next */
             "1:	"                  /* 7 next process start here */
             "popq %%rbp
    	"        /* 8 restore rbp of next  */
            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            : "m" (next->thread.sp),"m" (next->thread.ip)
          );
        }

    步骤1,2 保存了前一个进程的rbp和rsp,期中rbp保存在栈中,rsp保存在pcb.sp中

    步骤3 更换了进程栈,原本rsp指向前一个进程的栈,步骤3后指向了后一个进程的栈

    步骤4 将$1f 保存到了前一个线程的pcb.ip中(可以看做是保存当前进程的ip)

    步骤5,6 修改当前rip寄存器的值,相当于原来rip的内容为前一个进程的指令地址,现在为后一个进程的指令地址

    步骤7,8 将rbp寄存器的值修改为下一个进程的栈底

  • 相关阅读:
    day4-1
    day3-1
    day1-3
    day2-1
    day1-2
    day1 1
    对象的高度整合
    类和数据类型
    对象的绑定方法
    python总结
  • 原文地址:https://www.cnblogs.com/wwwxuexi/p/12878073.html
Copyright © 2011-2022 走看看