1.二进制和八进制表示法
ES6 提供了二进制和八进制数值的新的写法,分别用前缀0b(或0B)和0o(或0O)表示。
0b111110111 === 503 // true 0o767 === 503 // true
如果要将0b和0o前缀的字符串数值转为十进制,要使用Number方法。
Number('0b111') // 7 Number('0o10') // 8
2.Number.isFinite(), Number.isNaN()
ES6 在Number对象上,新提供了Number.isFinite()和Number.isNaN()两个方法。
Number.isFinite()用来检查一个数值是否为有限的(finite),即不是Infinity(无穷大)。
Number.isFinite(15); // true Number.isFinite(0.8); // true Number.isFinite(NaN); // false Number.isFinite(Infinity); // false Number.isFinite(-Infinity); // false Number.isFinite('foo'); // false Number.isFinite('15'); // false Number.isFinite(true); // false
注意,如果参数类型不是数值,Number.isFinite一律返回false。
Number.isNaN()用来检查一个值是否为NaN。
Number.isNaN(NaN) // true Number.isNaN(15) // false Number.isNaN('15') // false Number.isNaN(true) // false Number.isNaN(9/NaN) // true Number.isNaN('true' / 0) // true Number.isNaN('true' / 'true') // true
如果参数类型不是NaN。Number.isNaN一律返回false。
它们与传统的全局方法isFinite()和isNaN()的区别在于,传统方法先调用Number()将非数值的值转为数值,再进行判断,而这两个新方法只对数值有效,Number.isFinite()对于非数值一律返回false, Number.isNaN()只有对于NaN才返回true,非NaN一律返回false。
isFinite(25) // true isFinite("25") // true Number.isFinite(25) // true Number.isFinite("25") // false isNaN(NaN) // true isNaN("NaN") // true Number.isNaN(NaN) // true Number.isNaN("NaN") // false Number.isNaN(1) // false
3.Number.parseInt(), Number.parseFloat()
ES6 将全局方法parseInt()和parseFloat(),移植到Number对象上面,行为完全保持不变。这样做的目的,是逐步减少全局性方法,使得语言逐步模块化。
// ES5的写法 parseInt('12.34') // 12 parseFloat('123.45#') // 123.45 // ES6的写法 Number.parseInt('12.34') // 12 Number.parseFloat('123.45#') // 123.45 /// Number.parseInt === parseInt // true Number.parseFloat === parseFloat // true
4.Number.isInteger()
Number.isInteger()用来判断一个数值是否为整数。
Number.isInteger(25) // true Number.isInteger(25.1) // false
JavaScript 内部,整数和浮点数采用的是同样的储存方法,所以 25 和 25.0 被视为同一个值。
Number.isInteger(25) // true Number.isInteger(25.0) // true 25 === 25.0 //true
如果参数不是数值,Number.isInteger返回false。
Number.isInteger() // false Number.isInteger(null) // false Number.isInteger('15') // false Number.isInteger(true) // false
注意,由于 JavaScript 采用 IEEE 754 标准,数值存储为64位双精度格式,数值精度最多可以达到 53 个二进制位(1 个隐藏位与 52 个有效位)。如果数值的精度超过这个限度,第54位及后面的位就会被丢弃,这种情况下,Number.isInteger可能会误判。
Number.isInteger(3.0000000000000002) // true //转换为二进制 //11 Number.isInteger(3.000000000000002) // false //转换为二进制 //11.000000000000000000000000000000000000000000000000101
上面代码中,Number.isInteger的参数明明不是整数,但是会返回true。原因就是这个小数的精度达到了小数点后16个十进制位,转成二进制位超过了53个二进制位,导致最后的那个2被丢弃了。
类似的情况还有,如果一个数值的绝对值小于Number.MIN_VALUE(5E-324),即小于 JavaScript 能够分辨的最小值,会被自动转为 0。这时,Number.isInteger也会误判。
Number.isInteger(5E-324) // false Number.isInteger(5E-325) // true
上面代码中,5E-325由于值太小,会被自动转为0,因此返回true。
总之,如果对数据精度的要求较高,不建议使用Number.isInteger()判断一个数值是否为整数。
5.Number.EPSILON
ES6 在Number对象上面,新增一个极小的常量Number.EPSILON。根据规格,它表示 1 与大于 1 的最小浮点数之间的差。
对于 64 位浮点数来说,大于 1 的最小浮点数相当于二进制的1.00..001,小数点后面有连续 51 个零。这个值减去 1 之后,就等于 2 的 -52 次方。
Number.EPSILON === Math.pow(2, -52) // true Number.EPSILON // 2.220446049250313e-16 Number.EPSILON.toFixed(20) // "0.00000000000000022204"
Number.EPSILON实际上是 JavaScript 能够表示的最小精度。误差如果小于这个值,就可以认为已经没有意义了,即不存在误差了。
引入一个这么小的量的目的,在于为浮点数计算,设置一个误差范围。我们知道浮点数计算是不精确的。
0.1 + 0.2 // 0.30000000000000004 0.1 + 0.2 - 0.3 // 5.551115123125783e-17 5.551115123125783e-17.toFixed(20) // '0.00000000000000005551' 0.1 + 0.2 === 0.3 // false
Number.EPSILON可以用来设置“能够接受的误差范围”。比如,误差范围设为 2 的-50 次方(即Number.EPSILON * Math.pow(2, 2)),即如果两个浮点数的差小于这个值,我们就认为这两个浮点数相等。
5.551115123125783e-17 < Number.EPSILON * Math.pow(2, 2) // true
因此,Number.EPSILON的实质是一个可以接受的最小误差范围。
function withinErrorMargin (left, right) { return Math.abs(left - right) < Number.EPSILON * Math.pow(2, 2); } 0.1 + 0.2 === 0.3 // false withinErrorMargin(0.1 + 0.2, 0.3) // true 1.1 + 1.3 === 2.4 // false withinErrorMargin(1.1 + 1.3, 2.4) // true
6.安全整数和 Number.isSafeInteger()
JavaScript 能够准确表示的整数范围在-2^53到2^53之间(不含两个端点),超过这个范围,无法精确表示这个值。
Math.pow(2, 53) // 9007199254740992 9007199254740992 // 9007199254740992 9007199254740993 // 9007199254740992 Math.pow(2, 53) === Math.pow(2, 53) + 1 // true
ES6 引入了Number.MAX_SAFE_INTEGER和Number.MIN_SAFE_INTEGER这两个常量,用来表示这个范围的上下限。
Number.MAX_SAFE_INTEGER === Math.pow(2, 53) - 1 // true Number.MAX_SAFE_INTEGER === 9007199254740991 // true Number.MIN_SAFE_INTEGER === -Number.MAX_SAFE_INTEGER // true Number.MIN_SAFE_INTEGER === -9007199254740991 // true
Number.isSafeInteger()则是用来判断一个整数是否落在这个范围之内。
Number.isSafeInteger('a') // false Number.isSafeInteger(null) // false Number.isSafeInteger(NaN) // false Number.isSafeInteger(Infinity) // false Number.isSafeInteger(-Infinity) // false Number.isSafeInteger(3) // true Number.isSafeInteger(1.2) // false Number.isSafeInteger(9007199254740990) // true Number.isSafeInteger(9007199254740992) // false Number.isSafeInteger(Number.MIN_SAFE_INTEGER - 1) // false Number.isSafeInteger(Number.MIN_SAFE_INTEGER) // true Number.isSafeInteger(Number.MAX_SAFE_INTEGER) // true Number.isSafeInteger(Number.MAX_SAFE_INTEGER + 1) // false
这个函数的实现很简单,就是跟安全整数的两个边界值比较一下。
Number.isSafeInteger = function (n) { return (typeof n === 'number' && Math.round(n) === n && Number.MIN_SAFE_INTEGER <= n && n <= Number.MAX_SAFE_INTEGER); }
实际使用这个函数时,需要注意。验证运算结果是否落在安全整数的范围内,不要只验证运算结果,而要同时验证参与运算的每个值。
Number.isSafeInteger(9007199254740993) // false Number.isSafeInteger(990) // true Number.isSafeInteger(9007199254740993 - 990) // true 9007199254740993 - 990 // 返回结果 9007199254740002 // 正确答案应该是 9007199254740003
上面代码中,9007199254740993不是一个安全整数,但是Number.isSafeInteger会返回结果,显示计算结果是安全的。这是因为,这个数超出了精度范围,导致在计算机内部,以9007199254740992的形式储存。
9007199254740993 === 9007199254740992 // true
所以,如果只验证运算结果是否为安全整数,很可能得到错误结果。下面的函数可以同时验证两个运算数和运算结果。
function trusty (left, right, result) { if ( Number.isSafeInteger(left) && Number.isSafeInteger(right) && Number.isSafeInteger(result) ) { return result; } throw new RangeError('Operation cannot be trusted!'); } trusty(9007199254740993, 990, 9007199254740993 - 990) // RangeError: Operation cannot be trusted! trusty(1, 2, 3) // 3
7.Math 对象的扩展
ES6 在 Math 对象上新增了 17 个与数学相关的方法。所有这些方法都是静态方法,只能在 Math 对象上调用。
Math.trunc()
Math.trunc方法用于去除一个数的小数部分,返回整数部分。
Math.trunc(4.1) // 4 Math.trunc(4.9) // 4 Math.trunc(-4.1) // -4 Math.trunc(-4.9) // -4 Math.trunc(-0.1234) // -0 //对于非数值,Math.trunc内部使用Number方法将其先转为数值。 Math.trunc('123.456') // 123 Math.trunc(true) //1 Math.trunc(false) // 0 Math.trunc(null) // 0 //对于空值和无法截取整数的值,返回NaN。 Math.trunc(NaN); // NaN Math.trunc('foo'); // NaN Math.trunc(); // NaN Math.trunc(undefined) // NaN
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.trunc = Math.trunc || function(x) { return x < 0 ? Math.ceil(x) : Math.floor(x); };
Math.sign()
Math.sign方法用来判断一个数到底是正数、负数、还是零。对于非数值,会先将其转换为数值。
它会返回五种值。
- 参数为正数,返回+1;
- 参数为负数,返回-1;
- 参数为 0,返回0;
- 参数为-0,返回-0;
- 其他值,返回NaN。
Math.sign(-5) // -1 Math.sign(5) // +1 Math.sign(0) // +0 Math.sign(-0) // -0 Math.sign(NaN) // NaN //如果参数是非数值,会自动转为数值。对于那些无法转为数值的值,会返回NaN。 Math.sign('') // 0 Math.sign(true) // +1 Math.sign(false) // 0 Math.sign(null) // 0 Math.sign('9') // +1 Math.sign('foo') // NaN Math.sign() // NaN Math.sign(undefined) // NaN
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.sign = Math.sign || function(x) { x = +x; // convert to a number if (x === 0 || isNaN(x)) { return x; } return x > 0 ? 1 : -1; };
Math.cbrt()
Math.cbrt方法用于计算一个数的立方根。
Math.cbrt(-1) // -1 Math.cbrt(0) // 0 Math.cbrt(1) // 1 Math.cbrt(2) // 1.2599210498948734 //对于非数值,Math.cbrt方法内部也是先使用Number方法将其转为数值。对于那些无法转为数值的值,会返回NaN。 Math.cbrt('8') // 2 Math.cbrt('hello') // NaN
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.cbrt = Math.cbrt || function(x) { var y = Math.pow(Math.abs(x), 1/3); return x < 0 ? -y : y; };
Math.clz32()
Math.clz32()方法将参数转为 32 位无符号整数的形式,然后返回这个 32 位值里面有多少个前导 0。
Math.clz32(0) // 32 Math.clz32(1) // 31 Math.clz32(1000) // 22 Math.clz32(0b01000000000000000000000000000000) // 1 Math.clz32(0b00100000000000000000000000000000) // 2
上面代码中,0 的二进制形式全为 0,所以有 32 个前导 0;1 的二进制形式是0b1,只占 1 位,所以 32 位之中有 31 个前导 0;1000 的二进制形式是0b1111101000,一共有 10 位,所以 32 位之中有 22 个前导 0。
clz32这个函数名就来自”count leading zero bits in 32-bit binary representation of a number“(计算一个数的 32 位二进制形式的前导 0 的个数)的缩写。
左移运算符(<<),右移运算符(>>)都与Math.clz32方法直接相关。
Math.clz32(0) // 32 Math.clz32(1) // 31 Math.clz32(1 << 1) // 30 Math.clz32(1 >> 1) // 32 Math.clz32(1 << 2) // 29 Math.clz32(1 >> 2) // 32 Math.clz32(1 << 29) // 2 Math.clz32(1 >> 29) // 32
对于小数,Math.clz32方法只考虑整数部分。
Math.clz32(3.2) // 30 Math.clz32(3.9) // 30
对于空值或其他类型的值,Math.clz32方法会将它们先转为数值,然后再计算。
Math.clz32() // 32 Math.clz32(NaN) // 32 Math.clz32(Infinity) // 32 Math.clz32(null) // 32 Math.clz32('foo') // 32 Math.clz32([]) // 32 Math.clz32({}) // 32 Math.clz32(true) // 31
Math.imul()
Math.imul方法返回两个数以 32 位带符号整数形式相乘的结果,返回的也是一个 32 位的带符号整数。
Math.imul(2, 4) // 8 Math.imul(-1, 8) // -8 Math.imul(-2, -2) // 4
如果只考虑最后 32 位,大多数情况下,Math.imul(a, b)与a * b的结果是相同的,即该方法等同于(a * b)|0的效果(超过 32 位的部分溢出)。之所以需要部署这个方法,是因为 JavaScript 有精度限制,超过 2 的 53 次方的值无法精确表示。这就是说,对于那些很大的数的乘法,低位数值往往都是不精确的,Math.imul方法可以返回正确的低位数值。
(0x7fffffff * 0x7fffffff)|0 // 0
上面这个乘法算式,返回结果为 0。但是由于这两个二进制数的最低位都是 1,所以这个结果肯定是不正确的,因为根据二进制乘法,计算结果的二进制最低位应该也是 1。这个错误就是因为它们的乘积超过了 2 的 53 次方,JavaScript 无法保存额外的精度,就把低位的值都变成了 0。Math.imul方法可以返回正确的值 1。
Math.imul(0x7fffffff, 0x7fffffff) // 1
Math.fround()
Math.fround方法返回一个数的32位单精度浮点数形式。
对于32位单精度格式来说,数值精度是24个二进制位(1 位隐藏位与 23 位有效位),所以对于 -224 至 224 之间的整数(不含两个端点),返回结果与参数本身一致。
Math.fround(0) // 0 Math.fround(1) // 1 Math.fround(2 ** 24 - 1) // 16777215
如果参数的绝对值大于 224,返回的结果便开始丢失精度。
Math.fround(2 ** 24) // 16777216 Math.fround(2 ** 24 + 1) // 16777216
Math.fround方法的主要作用,是将64位双精度浮点数转为32位单精度浮点数。如果小数的精度超过24个二进制位,返回值就会不同于原值,否则返回值不变(即与64位双精度值一致)。
// 未丢失有效精度 Math.fround(1.125) // 1.125 Math.fround(7.25) // 7.25 // 丢失精度 Math.fround(0.3) // 0.30000001192092896 Math.fround(0.7) // 0.699999988079071 Math.fround(1.0000000123) // 1
对于 NaN 和 Infinity,此方法返回原值。对于其它类型的非数值,Math.fround 方法会先将其转为数值,再返回单精度浮点数
Math.fround(NaN) // NaN Math.fround(Infinity) // Infinity Math.fround('5') // 5 Math.fround(true) // 1 Math.fround(null) // 0 Math.fround([]) // 0 Math.fround({}) // NaN
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.fround = Math.fround || function (x) { return new Float32Array([x])[0]; };
Math.hypot()
Math.hypot方法返回所有参数的平方和的平方根。
Math.hypot(3, 4); // 5 Math.hypot(3, 4, 5); // 7.0710678118654755 Math.hypot(); // 0 Math.hypot(NaN); // NaN Math.hypot(3, 4, 'foo'); // NaN Math.hypot(3, 4, '5'); // 7.0710678118654755 Math.hypot(-3); // 3
上面代码中,3 的平方加上 4 的平方,等于 5 的平方。
如果参数不是数值,Math.hypot方法会将其转为数值。只要有一个参数无法转为数值,就会返回 NaN。
对数方法
ES6 新增了 4 个对数相关方法。
(1) Math.expm1()
Math.expm1(x)返回 ex - 1,即Math.exp(x) - 1。
Math.expm1(-1) // -0.6321205588285577 Math.expm1(0) // 0 Math.expm1(1) // 1.718281828459045
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.expm1 = Math.expm1 || function(x) { return Math.exp(x) - 1; };
(2)Math.log1p()
Math.log1p(x)方法返回1 + x的自然对数(底数为E),即Math.log(1 + x)。如果x小于-1,返回NaN。
Math.log1p(1) // 0.6931471805599453 Math.log1p(0) // 0 Math.log1p(-1) // -Infinity Math.log1p(-2) // NaN
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.log1p = Math.log1p || function(x) { return Math.log(1 + x); };
(3)Math.log10()
Math.log10(x)返回以 10 为底的x的对数。如果x小于 0,则返回 NaN。
Math.log10(2) // 0.3010299956639812 Math.log10(1) // 0 Math.log10(0) // -Infinity Math.log10(-2) // NaN Math.log10(100000) // 5
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.log10 = Math.log10 || function(x) { return Math.log(x) / Math.LN10; };
(4)Math.log2()
Math.log2(x)返回以 2 为底的x的对数。如果x小于 0,则返回 NaN。
Math.log2(3) // 1.584962500721156 Math.log2(2) // 1 Math.log2(1) // 0 Math.log2(0) // -Infinity Math.log2(-2) // NaN Math.log2(1024) // 10 Math.log2(1 << 29) // 29
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.log2 = Math.log2 || function(x) { return Math.log(x) / Math.LN2; };
双曲函数方法
ES6 新增了 6 个双曲函数方法。
- Math.sinh(x) 返回x的双曲正弦(hyperbolic sine)
- Math.cosh(x) 返回x的双曲余弦(hyperbolic cosine)
- Math.tanh(x) 返回x的双曲正切(hyperbolic tangent)
- Math.asinh(x) 返回x的反双曲正弦(inverse hyperbolic sine)
- Math.acosh(x) 返回x的反双曲余弦(inverse hyperbolic cosine)
- Math.atanh(x) 返回x的反双曲正切(inverse hyperbolic tangent)
8.指数运算符
ES2016 新增了一个指数运算符(**)。
2 ** 2 // 4 2 ** 3 // 8
这个运算符的一个特点是右结合,而不是常见的左结合。多个指数运算符连用时,是从最右边开始计算的。
// 相当于 2 ** (3 ** 2) 2 ** 3 ** 2 // 512
上面代码中,首先计算的是第二个指数运算符,而不是第一个。
指数运算符可以与等号结合,形成一个新的赋值运算符(**=)。
let a = 1.5; a **= 2; // 2.25 // 等同于 a = a * a; let b = 4; b **= 3; // 64 // 等同于 b = b * b * b;
注意,V8 引擎的指数运算符与Math.pow的实现不相同,对于特别大的运算结果,两者会有细微的差异。