zoukankan      html  css  js  c++  java
  • 哈希表实例

    1.#include <stdio.h>
    #include <stdlib.h>
    #include "Hash.h"

    /*  哈希技术的实现  */

    struct Student
    {
        char* id;
        char* name;
        int age;
    };

    int compare_id(HashKey* k1, HashKey* k2)
    {
        return strcmp((char*)k1, (char*)k2);
    }

    int main(int argc, char *argv[])
    {
        Hash* hash = Hash_Create();
        
        struct Student s1 = {"9001201", "Delphi", 30};
        struct Student s2 = {"0xABCDE", "Java", 20};
        struct Student s3 = {"koabc", "C++", 40};
        struct Student s4 = {"!@#$%^", "C#", 10};
        struct Student s5 = {"Python", "Python", 10};
        struct Student* ps = NULL;
        //add five
        Hash_Add(hash, s1.id, &s1, compare_id);
        Hash_Add(hash, s2.id, &s2, compare_id);
        Hash_Add(hash, s3.id, &s3, compare_id);
        Hash_Add(hash, s4.id, &s4, compare_id);
        Hash_Add(hash, s5.id, &s5, compare_id);
        // by ID get value
        ps = Hash_Get(hash, "koabc", compare_id);
        
        printf("ID: %s ", ps->id);
        printf("Name: %s ", ps->name);
        printf("Age: %d ", ps->age);
        
        Hash_Destroy(hash);
        
        return 0;
    }

    2.#ifndef _HASH_H_
    #define _HASH_H_

    typedef void Hash;
    typedef void HashKey;
    typedef void HashValue;

    typedef int (Hash_Compare)(HashKey*, HashKey*);

    /*   在二叉排序算法的基础上实现哈希技术的实现   */

    Hash* Hash_Create();
    void Hash_Destroy(Hash* hash);
    void Hash_Clear(Hash* hash);
    int Hash_Add(Hash* hash, HashKey* key, HashValue* value, Hash_Compare* compare);
    HashValue* Hash_Remove (Hash* hash, HashKey* key, Hash_Compare* compare);
    HashValue* Hash_Get(Hash* hash, HashKey* key, Hash_Compare* compare);
    int Hash_Count(Hash* hash);

    #endif

    3.#include <stdio.h>
    #include <malloc.h>
    #include "Hash.h"
    #include "BSTree.h"

    typedef struct _tag_HashNode HashNode;
    struct _tag_HashNode
    {
        BSTreeNode header;
        HashValue* value;
    };

    void recursive_clear(BSTreeNode* node)
    {
        if( node != NULL )
        {
            recursive_clear(node->left);
            recursive_clear(node->right);
            
            free(node);
        }
    }
    //创建哈希表
    Hash* Hash_Create()
    {
        return BSTree_Create();
    }
    //destory
    void Hash_Destroy(Hash* hash)
    {
        Hash_Clear(hash);
        BSTree_Destroy(hash);
    }
    //clear
    void Hash_Clear(Hash* hash)
    {
        recursive_clear(BSTree_Root(hash));
        BSTree_Clear(hash);
    }
    // add elements
    int Hash_Add(Hash* hash, HashKey* key, HashValue* value, Hash_Compare* compare)
    {
        int ret = 0;
        HashNode* node = (HashNode*)malloc(sizeof(HashNode));
        
        if( ret = (node != NULL) )
        {
            node->header.key = key;
            node->value = value;
            // insert
            ret = BSTree_Insert(hash, (BSTreeNode*)node, compare);
            
            if( !ret )
            {
                free(node);
            }
        }
        
        return ret;
    }
    // remove elements
    HashValue* Hash_Remove(Hash* hash, HashKey* key, Hash_Compare* compare)
    {
        HashValue* ret = NULL;
        HashNode* node = (HashNode*)BSTree_Delete(hash, key, compare);
        
        if( node != NULL )
        {
            ret = node->value;
            
            free(node);
        }
        
        return ret;
    }
    // by  key get elements
    HashValue* Hash_Get(Hash* hash, HashKey* key, Hash_Compare* compare)
    {
        HashValue* ret = NULL;
        HashNode* node = (HashNode*)BSTree_Get(hash, key, compare);
        
        if( node != NULL )
        {
            ret = node->value;
        }
        
        return ret;
    }
    //count
    int Hash_Count(Hash* hash)
    {
        return BSTree_Count(hash);
    }

    4.#ifndef _BSTREE_H_
    #define _BSTREE_H_

    typedef void BSTree;
    typedef void BSKey;

    typedef struct _tag_BSTreeNode BSTreeNode;
    struct _tag_BSTreeNode
    {
        BSKey* key;
        BSTreeNode* left;
        BSTreeNode* right;
    };
    /*  二叉排序树的封装  */

    typedef void (BSTree_Printf)(BSTreeNode*);
    typedef int (BSTree_Compare)(BSKey*, BSKey*);

    BSTree* BSTree_Create();

    void BSTree_Destroy(BSTree* tree);

    void BSTree_Clear(BSTree* tree);

    int BSTree_Insert(BSTree* tree, BSTreeNode* node, BSTree_Compare* compare);

    BSTreeNode* BSTree_Delete(BSTree* tree, BSKey* key, BSTree_Compare* compare);

    BSTreeNode* BSTree_Get(BSTree* tree, BSKey* key, BSTree_Compare* compare);

    BSTreeNode* BSTree_Root(BSTree* tree);

    int BSTree_Height(BSTree* tree);

    int BSTree_Count(BSTree* tree);

    int BSTree_Degree(BSTree* tree);

    void BSTree_Display(BSTree* tree, BSTree_Printf* pFunc, int gap, char div);

    #endif

    5.#include <stdio.h>
    #include <malloc.h>
    #include "BSTree.h"

    typedef struct _tag_BSTree TBSTree;
    struct _tag_BSTree
    {
        int count;
        BSTreeNode* root;
    };

    /*  二叉排序算法的实现  */

    static void recursive_display(BSTreeNode* node, BSTree_Printf* pFunc, int format, int gap, char div) // O(n)
    {
        int i = 0;
        
        if( (node != NULL) && (pFunc != NULL) )
        {
            for(i=0; i<format; i++)
            {
                printf("%c", div);
            }
            
            pFunc(node);
            
            printf(" ");
            
            if( (node->left != NULL) || (node->right != NULL) )
            {
                recursive_display(node->left, pFunc, format + gap, gap, div);
                recursive_display(node->right, pFunc, format + gap, gap, div);
            }
        }
        else
        {
            for(i=0; i<format; i++)
            {
                printf("%c", div);
            }
            printf(" ");
        }
    }

    static int recursive_count(BSTreeNode* root) // O(n)
    {
        int ret = 0;
        
        if( root != NULL )
        {
            ret = recursive_count(root->left) + 1 + recursive_count(root->right);
        }
        
        return ret;
    }

    static int recursive_height(BSTreeNode* root) // O(n)
    {
        int ret = 0;
        
        if( root != NULL )
        {
            int lh = recursive_height(root->left);
            int rh = recursive_height(root->right);
            
            ret = ((lh > rh) ? lh : rh) + 1;
        }
        
        return ret;
    }

    static int recursive_degree(BSTreeNode* root) // O(n)
    {
        int ret = 0;
        
        if( root != NULL )
        {
            if( root->left != NULL )
            {
                ret++;
            }
            
            if( root->right != NULL )
            {
                ret++;
            }
            
            if( ret == 1 )
            {
                int ld = recursive_degree(root->left);
                int rd = recursive_degree(root->right);
                
                if( ret < ld )
                {
                    ret = ld;
                }
                
                if( ret < rd )
                {
                    ret = rd;
                }
            }
        }
        
        return ret;
    }

    static int recursive_insert(BSTreeNode* root, BSTreeNode* node, BSTree_Compare* compare)
    {
        int ret = 1;
        int r = compare(node->key, root->key);
        
        if( r == 0 )
        {
            ret = 0;
        }
        else if( r < 0 )
        {
            if( root->left != NULL )
            {
                ret = recursive_insert(root->left, node, compare);
            }
            else
            {
                root->left = node;
            }
        }
        else if( r > 0 )
        {
            if( root->right != NULL )
            {
                ret = recursive_insert(root->right, node, compare);
            }
            else
            {
                root->right = node;
            }
        }
    }

    static BSTreeNode* recursive_get(BSTreeNode* root, BSKey* key, BSTree_Compare* compare)
    {
        BSTreeNode* ret = NULL;
        
        if( root != NULL )
        {
            int r = compare(key, root->key);
            
            if( r == 0 )
            {
                ret = root;
            }
            else if( r < 0 )
            {
                ret = recursive_get(root->left, key, compare);
            }
            else if( r > 0 )
            {
                ret = recursive_get(root->right, key, compare);
            }
        }
        
        return ret;
    }

    static BSTreeNode* delete_node(BSTreeNode** pRoot)
    {
        BSTreeNode* ret = *pRoot;
        
        if( (*pRoot)->right == NULL )
        {
            *pRoot = (*pRoot)->left;
        }
        else if( (*pRoot)->left == NULL )
        {
            *pRoot = (*pRoot)->right;
        }
        else
        {
            BSTreeNode* g = *pRoot;
            BSTreeNode* c = (*pRoot)->left;
            
            while( c->right != NULL )
            {
                g = c;
                c = c->right;
            }
            
            if( g != *pRoot )
            {
                g->right = c->left;
            }
            else
            {
                g->left = c->left;
            }

            c->left = (*pRoot)->left;
            c->right = (*pRoot)->right;
            
            *pRoot = c;
        }
        
        return ret;
    }

    static BSTreeNode* recursive_delete(BSTreeNode** pRoot, BSKey* key, BSTree_Compare* compare)
    {
        BSTreeNode* ret = NULL;
        
        if( (pRoot != NULL) && (*pRoot != NULL) )
        {
            int r = compare(key, (*pRoot)->key);
            
            if( r == 0 )
            {
                ret = delete_node(pRoot);
            }
            else if( r < 0 )
            {
                ret = recursive_delete(&((*pRoot)->left), key, compare);
            }
            else if( r > 0 )
            {
                ret = recursive_delete(&((*pRoot)->right), key, compare);
            }
        }
        
        return ret;
    }

    BSTree* BSTree_Create() // O(1)
    {
        TBSTree* ret = (TBSTree*)malloc(sizeof(TBSTree));
        
        if( ret != NULL )
        {
            ret->count = 0;
            ret->root = NULL;
        }
        
        return ret;
    }

    void BSTree_Destroy(BSTree* tree) // O(1)
    {
        free(tree);
    }

    void BSTree_Clear(BSTree* tree) // O(1)
    {
        TBSTree* btree = (TBSTree*)tree;
        
        if( btree != NULL )
        {
            btree->count = 0;
            btree->root = NULL;
        }
    }

    int BSTree_Insert(BSTree* tree, BSTreeNode* node, BSTree_Compare* compare)
    {
        TBSTree* btree = (TBSTree*)tree;
        int ret = (btree != NULL) && (node != NULL) && (compare != NULL);
        
        if( ret )
        {
            node->left = NULL;
            node->right = NULL;
            
            if( btree->root == NULL )
            {
                btree->root = node;
            }
            else
            {
                ret = recursive_insert(btree->root, node, compare);
            }
            
            if( ret )
            {
                btree->count++;
            }
        }
        
        return ret;
    }

    BSTreeNode* BSTree_Delete(BSTree* tree, BSKey* key, BSTree_Compare* compare)
    {
        TBSTree* btree = (TBSTree*)tree;
        BSTreeNode* ret = NULL;
        
        if( (btree != NULL) && (key != NULL) && (compare != NULL) )
        {
            ret = recursive_delete(&btree->root, key, compare);
            
            if( ret != NULL )
            {
                btree->count--;
            }
        }
        
        return ret;
    }

    BSTreeNode* BSTree_Get(BSTree* tree, BSKey* key, BSTree_Compare* compare)
    {
        TBSTree* btree = (TBSTree*)tree;
        BSTreeNode* ret = NULL;
        
        if( (btree != NULL) && (key != NULL) && (compare != NULL) )
        {
            ret = recursive_get(btree->root, key, compare);
        }
        
        return ret;
    }

    BSTreeNode* BSTree_Root(BSTree* tree) // O(1)
    {
        TBSTree* btree = (TBSTree*)tree;
        BSTreeNode* ret = NULL;
        
        if( btree != NULL )
        {
            ret = btree->root;
        }
        
        return ret;
    }

    int BSTree_Height(BSTree* tree) // O(n)
    {
        TBSTree* btree = (TBSTree*)tree;
        int ret = 0;
        
        if( btree != NULL )
        {
            ret = recursive_height(btree->root);
        }
        
        return ret;
    }

    int BSTree_Count(BSTree* tree) // O(1)
    {
        TBSTree* btree = (TBSTree*)tree;
        int ret = 0;
        
        if( btree != NULL )
        {
            ret = btree->count;
        }
        
        return ret;
    }

    int BSTree_Degree(BSTree* tree) // O(n)
    {
        TBSTree* btree = (TBSTree*)tree;
        int ret = 0;
        
        if( btree != NULL )
        {
            ret = recursive_degree(btree->root);
        }
        
        return ret;
    }

    void BSTree_Display(BSTree* tree, BSTree_Printf* pFunc, int gap, char div) // O(n)
    {
        TBSTree* btree = (TBSTree*)tree;
        
        if( btree != NULL )
        {
            recursive_display(btree->root, pFunc, 0, gap, div);
        }
    }

  • 相关阅读:
    架设某大型网站服务器之全部过程
    利用js实现页面关闭时发送http请求
    用jquery解析JSON数据的方法
    在创业公司工作四年,如何赚百万
    一个http请求的详细过程
    VIM 查找替换命令的使用
    swfobject
    获取并显示某目录下的图片
    Windows下架设Subversion服务器
    OA系统概念(办公自动化系统)
  • 原文地址:https://www.cnblogs.com/wxb20/p/6197111.html
Copyright © 2011-2022 走看看