1.#include <stdio.h>
#include <stdlib.h>
#include "Hash.h"
/* 哈希技术的实现 */
struct Student
{
char* id;
char* name;
int age;
};
int compare_id(HashKey* k1, HashKey* k2)
{
return strcmp((char*)k1, (char*)k2);
}
int main(int argc, char *argv[])
{
Hash* hash = Hash_Create();
struct Student s1 = {"9001201", "Delphi", 30};
struct Student s2 = {"0xABCDE", "Java", 20};
struct Student s3 = {"koabc", "C++", 40};
struct Student s4 = {"!@#$%^", "C#", 10};
struct Student s5 = {"Python", "Python", 10};
struct Student* ps = NULL;
//add five
Hash_Add(hash, s1.id, &s1, compare_id);
Hash_Add(hash, s2.id, &s2, compare_id);
Hash_Add(hash, s3.id, &s3, compare_id);
Hash_Add(hash, s4.id, &s4, compare_id);
Hash_Add(hash, s5.id, &s5, compare_id);
// by ID get value
ps = Hash_Get(hash, "koabc", compare_id);
printf("ID: %s
", ps->id);
printf("Name: %s
", ps->name);
printf("Age: %d
", ps->age);
Hash_Destroy(hash);
return 0;
}
2.#ifndef _HASH_H_
#define _HASH_H_
typedef void Hash;
typedef void HashKey;
typedef void HashValue;
typedef int (Hash_Compare)(HashKey*, HashKey*);
/* 在二叉排序算法的基础上实现哈希技术的实现 */
Hash* Hash_Create();
void Hash_Destroy(Hash* hash);
void Hash_Clear(Hash* hash);
int Hash_Add(Hash* hash, HashKey* key, HashValue* value, Hash_Compare* compare);
HashValue* Hash_Remove (Hash* hash, HashKey* key, Hash_Compare* compare);
HashValue* Hash_Get(Hash* hash, HashKey* key, Hash_Compare* compare);
int Hash_Count(Hash* hash);
#endif
3.#include <stdio.h>
#include <malloc.h>
#include "Hash.h"
#include "BSTree.h"
typedef struct _tag_HashNode HashNode;
struct _tag_HashNode
{
BSTreeNode header;
HashValue* value;
};
void recursive_clear(BSTreeNode* node)
{
if( node != NULL )
{
recursive_clear(node->left);
recursive_clear(node->right);
free(node);
}
}
//创建哈希表
Hash* Hash_Create()
{
return BSTree_Create();
}
//destory
void Hash_Destroy(Hash* hash)
{
Hash_Clear(hash);
BSTree_Destroy(hash);
}
//clear
void Hash_Clear(Hash* hash)
{
recursive_clear(BSTree_Root(hash));
BSTree_Clear(hash);
}
// add elements
int Hash_Add(Hash* hash, HashKey* key, HashValue* value, Hash_Compare* compare)
{
int ret = 0;
HashNode* node = (HashNode*)malloc(sizeof(HashNode));
if( ret = (node != NULL) )
{
node->header.key = key;
node->value = value;
// insert
ret = BSTree_Insert(hash, (BSTreeNode*)node, compare);
if( !ret )
{
free(node);
}
}
return ret;
}
// remove elements
HashValue* Hash_Remove(Hash* hash, HashKey* key, Hash_Compare* compare)
{
HashValue* ret = NULL;
HashNode* node = (HashNode*)BSTree_Delete(hash, key, compare);
if( node != NULL )
{
ret = node->value;
free(node);
}
return ret;
}
// by key get elements
HashValue* Hash_Get(Hash* hash, HashKey* key, Hash_Compare* compare)
{
HashValue* ret = NULL;
HashNode* node = (HashNode*)BSTree_Get(hash, key, compare);
if( node != NULL )
{
ret = node->value;
}
return ret;
}
//count
int Hash_Count(Hash* hash)
{
return BSTree_Count(hash);
}
4.#ifndef _BSTREE_H_
#define _BSTREE_H_
typedef void BSTree;
typedef void BSKey;
typedef struct _tag_BSTreeNode BSTreeNode;
struct _tag_BSTreeNode
{
BSKey* key;
BSTreeNode* left;
BSTreeNode* right;
};
/* 二叉排序树的封装 */
typedef void (BSTree_Printf)(BSTreeNode*);
typedef int (BSTree_Compare)(BSKey*, BSKey*);
BSTree* BSTree_Create();
void BSTree_Destroy(BSTree* tree);
void BSTree_Clear(BSTree* tree);
int BSTree_Insert(BSTree* tree, BSTreeNode* node, BSTree_Compare* compare);
BSTreeNode* BSTree_Delete(BSTree* tree, BSKey* key, BSTree_Compare* compare);
BSTreeNode* BSTree_Get(BSTree* tree, BSKey* key, BSTree_Compare* compare);
BSTreeNode* BSTree_Root(BSTree* tree);
int BSTree_Height(BSTree* tree);
int BSTree_Count(BSTree* tree);
int BSTree_Degree(BSTree* tree);
void BSTree_Display(BSTree* tree, BSTree_Printf* pFunc, int gap, char div);
#endif
5.#include <stdio.h>
#include <malloc.h>
#include "BSTree.h"
typedef struct _tag_BSTree TBSTree;
struct _tag_BSTree
{
int count;
BSTreeNode* root;
};
/* 二叉排序算法的实现 */
static void recursive_display(BSTreeNode* node, BSTree_Printf* pFunc, int format, int gap, char div) // O(n)
{
int i = 0;
if( (node != NULL) && (pFunc != NULL) )
{
for(i=0; i<format; i++)
{
printf("%c", div);
}
pFunc(node);
printf("
");
if( (node->left != NULL) || (node->right != NULL) )
{
recursive_display(node->left, pFunc, format + gap, gap, div);
recursive_display(node->right, pFunc, format + gap, gap, div);
}
}
else
{
for(i=0; i<format; i++)
{
printf("%c", div);
}
printf("
");
}
}
static int recursive_count(BSTreeNode* root) // O(n)
{
int ret = 0;
if( root != NULL )
{
ret = recursive_count(root->left) + 1 + recursive_count(root->right);
}
return ret;
}
static int recursive_height(BSTreeNode* root) // O(n)
{
int ret = 0;
if( root != NULL )
{
int lh = recursive_height(root->left);
int rh = recursive_height(root->right);
ret = ((lh > rh) ? lh : rh) + 1;
}
return ret;
}
static int recursive_degree(BSTreeNode* root) // O(n)
{
int ret = 0;
if( root != NULL )
{
if( root->left != NULL )
{
ret++;
}
if( root->right != NULL )
{
ret++;
}
if( ret == 1 )
{
int ld = recursive_degree(root->left);
int rd = recursive_degree(root->right);
if( ret < ld )
{
ret = ld;
}
if( ret < rd )
{
ret = rd;
}
}
}
return ret;
}
static int recursive_insert(BSTreeNode* root, BSTreeNode* node, BSTree_Compare* compare)
{
int ret = 1;
int r = compare(node->key, root->key);
if( r == 0 )
{
ret = 0;
}
else if( r < 0 )
{
if( root->left != NULL )
{
ret = recursive_insert(root->left, node, compare);
}
else
{
root->left = node;
}
}
else if( r > 0 )
{
if( root->right != NULL )
{
ret = recursive_insert(root->right, node, compare);
}
else
{
root->right = node;
}
}
}
static BSTreeNode* recursive_get(BSTreeNode* root, BSKey* key, BSTree_Compare* compare)
{
BSTreeNode* ret = NULL;
if( root != NULL )
{
int r = compare(key, root->key);
if( r == 0 )
{
ret = root;
}
else if( r < 0 )
{
ret = recursive_get(root->left, key, compare);
}
else if( r > 0 )
{
ret = recursive_get(root->right, key, compare);
}
}
return ret;
}
static BSTreeNode* delete_node(BSTreeNode** pRoot)
{
BSTreeNode* ret = *pRoot;
if( (*pRoot)->right == NULL )
{
*pRoot = (*pRoot)->left;
}
else if( (*pRoot)->left == NULL )
{
*pRoot = (*pRoot)->right;
}
else
{
BSTreeNode* g = *pRoot;
BSTreeNode* c = (*pRoot)->left;
while( c->right != NULL )
{
g = c;
c = c->right;
}
if( g != *pRoot )
{
g->right = c->left;
}
else
{
g->left = c->left;
}
c->left = (*pRoot)->left;
c->right = (*pRoot)->right;
*pRoot = c;
}
return ret;
}
static BSTreeNode* recursive_delete(BSTreeNode** pRoot, BSKey* key, BSTree_Compare* compare)
{
BSTreeNode* ret = NULL;
if( (pRoot != NULL) && (*pRoot != NULL) )
{
int r = compare(key, (*pRoot)->key);
if( r == 0 )
{
ret = delete_node(pRoot);
}
else if( r < 0 )
{
ret = recursive_delete(&((*pRoot)->left), key, compare);
}
else if( r > 0 )
{
ret = recursive_delete(&((*pRoot)->right), key, compare);
}
}
return ret;
}
BSTree* BSTree_Create() // O(1)
{
TBSTree* ret = (TBSTree*)malloc(sizeof(TBSTree));
if( ret != NULL )
{
ret->count = 0;
ret->root = NULL;
}
return ret;
}
void BSTree_Destroy(BSTree* tree) // O(1)
{
free(tree);
}
void BSTree_Clear(BSTree* tree) // O(1)
{
TBSTree* btree = (TBSTree*)tree;
if( btree != NULL )
{
btree->count = 0;
btree->root = NULL;
}
}
int BSTree_Insert(BSTree* tree, BSTreeNode* node, BSTree_Compare* compare)
{
TBSTree* btree = (TBSTree*)tree;
int ret = (btree != NULL) && (node != NULL) && (compare != NULL);
if( ret )
{
node->left = NULL;
node->right = NULL;
if( btree->root == NULL )
{
btree->root = node;
}
else
{
ret = recursive_insert(btree->root, node, compare);
}
if( ret )
{
btree->count++;
}
}
return ret;
}
BSTreeNode* BSTree_Delete(BSTree* tree, BSKey* key, BSTree_Compare* compare)
{
TBSTree* btree = (TBSTree*)tree;
BSTreeNode* ret = NULL;
if( (btree != NULL) && (key != NULL) && (compare != NULL) )
{
ret = recursive_delete(&btree->root, key, compare);
if( ret != NULL )
{
btree->count--;
}
}
return ret;
}
BSTreeNode* BSTree_Get(BSTree* tree, BSKey* key, BSTree_Compare* compare)
{
TBSTree* btree = (TBSTree*)tree;
BSTreeNode* ret = NULL;
if( (btree != NULL) && (key != NULL) && (compare != NULL) )
{
ret = recursive_get(btree->root, key, compare);
}
return ret;
}
BSTreeNode* BSTree_Root(BSTree* tree) // O(1)
{
TBSTree* btree = (TBSTree*)tree;
BSTreeNode* ret = NULL;
if( btree != NULL )
{
ret = btree->root;
}
return ret;
}
int BSTree_Height(BSTree* tree) // O(n)
{
TBSTree* btree = (TBSTree*)tree;
int ret = 0;
if( btree != NULL )
{
ret = recursive_height(btree->root);
}
return ret;
}
int BSTree_Count(BSTree* tree) // O(1)
{
TBSTree* btree = (TBSTree*)tree;
int ret = 0;
if( btree != NULL )
{
ret = btree->count;
}
return ret;
}
int BSTree_Degree(BSTree* tree) // O(n)
{
TBSTree* btree = (TBSTree*)tree;
int ret = 0;
if( btree != NULL )
{
ret = recursive_degree(btree->root);
}
return ret;
}
void BSTree_Display(BSTree* tree, BSTree_Printf* pFunc, int gap, char div) // O(n)
{
TBSTree* btree = (TBSTree*)tree;
if( btree != NULL )
{
recursive_display(btree->root, pFunc, 0, gap, div);
}
}