zoukankan      html  css  js  c++  java
  • 有向图的基本算法

      有向图的基本定义:由一组顶点和一组有向边组成,每条有向边连接着有序的一对顶点。

    import java.util.InputMismatchException;
    import java.util.NoSuchElementException;
    
    public class Digraph {
        private final int V;           // number of vertices in this digraph
        private int E;                 // number of edges in this digraph
        private Bag<Integer>[] adj;    // adj[v] = adjacency list for vertex v
        private int[] indegree;        // indegree[v] = indegree of vertex v
        
        public Digraph(int V) {
            if (V < 0) throw new IllegalArgumentException("Number of vertices in a Digraph must be nonnegative");
            this.V = V;
            this.E = 0;
            indegree = new int[V];
            adj = (Bag<Integer>[]) new Bag[V];
            for (int v = 0; v < V; v++) {
                adj[v] = new Bag<Integer>();
            }
        }
       
        public int V() {
            return V;
        }
    
        public int E() {
            return E;
        }
    
        public void addEdge(int v, int w) {
            validateVertex(v);
            validateVertex(w);
            adj[v].add(w);
            indegree[w]++;
            E++;
        }
    
        public Iterable<Integer> adj(int v) {
            validateVertex(v);
            return adj[v];
        }
    
        public int outdegree(int v) {
            validateVertex(v);
            return adj[v].size();
        }
    
        public int indegree(int v) {
            validateVertex(v);
            return indegree[v];
        }
    
        public Digraph reverse() {
            Digraph reverse = new Digraph(V);
            for (int v = 0; v < V; v++) {
                for (int w : adj(v)) {
                    reverse.addEdge(w, v);
                }
            }
            return reverse;
        } 
    }
    View Code

      有向路径由一系列顶点组成,对于其中的每个顶点都存在有向边从它指向序列中的下个顶点。

      有向环:一条至少含有一条边且起点和重点相同的有向路径。  

    有向图的可达性  

      单点可达性问题给定一幅有向图和一个起点s,回答是否存在一条从s到给定顶点v的有向路径。

      多点可达性给定一幅有向图图和顶点的集合,回答是否存在一条从集合中的任意顶点到达给定顶点V的有向路径。

    public class DirectedDFS {
        private boolean[] marked;  // marked[v] = true if v is reachable
                                   // from source (or sources)
        private int count;         // number of vertices reachable from s
        public DirectedDFS(Digraph G, int s) {
            marked = new boolean[G.V()];
            dfs(G, s);
        }
    
        public DirectedDFS(Digraph G, Iterable<Integer> sources) {
            marked = new boolean[G.V()];
            for (int v : sources) {
                if (!marked[v]) dfs(G, v);
            }
        }
    
        private void dfs(Digraph G, int v) { 
            count++;
            marked[v] = true;
            for (int w : G.adj(v)) {
                if (!marked[w]) dfs(G, w);
            }
        }
    
        public boolean marked(int v) {
            return marked[v];
        }
    
        public int count() {
            return count;
        }
    }
    View Code

      有向无环图(DAG):就是一幅不含有环的有向图。 

    public class DirectedCycle {
        private boolean[] marked;        // marked[v] = has vertex v been marked?
        private int[] edgeTo;            // edgeTo[v] = previous vertex on path to v
        private boolean[] onStack;       // onStack[v] = is vertex on the stack?
        private Stack<Integer> cycle;    // directed cycle (or null if no such cycle)
    
        public DirectedCycle(Digraph G) {
            marked  = new boolean[G.V()];
            onStack = new boolean[G.V()];
            edgeTo  = new int[G.V()];
            for (int v = 0; v < G.V(); v++)
                if (!marked[v] && cycle == null) dfs(G, v);
        }
    
        private void dfs(Digraph G, int v) {
            onStack[v] = true;
            marked[v] = true;
            for (int w : G.adj(v)) {
                // short circuit if directed cycle found
                if (cycle != null) return;
                // found new vertex, so recur
                else if (!marked[w]) {
                    edgeTo[w] = v;
                    dfs(G, w);
                }
                // trace back directed cycle
                else if (onStack[w]) {
                    cycle = new Stack<Integer>();
                    for (int x = v; x != w; x = edgeTo[x]) {
                        cycle.push(x);
                    }
                    cycle.push(w);
                    cycle.push(v);
                    assert check();
                }
            }
            onStack[v] = false;
        }
    
        public boolean hasCycle() {
            return cycle != null;
        }
    
        public Iterable<Integer> cycle() {
            return cycle;
        }
    }
    View Code

      有向图的拓扑排序: 对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若<u,v> ∈E(G),则u在线性序列中出现在v之前。 通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。

    public class Topological {
        private Iterable<Integer> order;  // topological order
        private int[] rank;       // rank[v] = position of vertex v in topological order
    
        public Topological(EdgeWeightedDigraph G) {
            EdgeWeightedDirectedCycle finder = new EdgeWeightedDirectedCycle(G);
            if (!finder.hasCycle()) {
                DepthFirstOrder dfs = new DepthFirstOrder(G);
                order = dfs.reversePost();
            }
        }
    
        public Iterable<Integer> order() {
            return order;
        }
       
        public boolean hasOrder() {
            return order != null;
        }
       
        public int rank(int v) {
            if (hasOrder()) return rank[v];
            else            return -1;
        }
    
    }
    View Code

      有向图中基于深度优先搜索的顶点排序:

    public class DepthFirstOrder {
        private boolean[] marked;          // marked[v] = has v been marked in dfs?
        private int[] pre;                 // pre[v]    = preorder  number of v
        private int[] post;                // post[v]   = postorder number of v
        private Queue<Integer> preorder;   // vertices in preorder
        private Queue<Integer> postorder;  // vertices in postorder
        private int preCounter;            // counter or preorder numbering
        private int postCounter;           // counter for postorder numbering
    
        public DepthFirstOrder(EdgeWeightedDigraph G) {
            pre    = new int[G.V()];
            post   = new int[G.V()];
            postorder = new Queue<Integer>();
            preorder  = new Queue<Integer>();
            marked    = new boolean[G.V()];
            for (int v = 0; v < G.V(); v++)
                if (!marked[v]) dfs(G, v);
        }
    
        private void dfs(EdgeWeightedDigraph G, int v) {
            marked[v] = true;
            pre[v] = preCounter++;
            preorder.enqueue(v);
            for (DirectedEdge e : G.adj(v)) {
                int w = e.to();
                if (!marked[w]) {
                    dfs(G, w);
                }
            }
            postorder.enqueue(v);
            post[v] = postCounter++;
        }
    
        public int pre(int v) {
            return pre[v];
        }
    
        public int post(int v) {
            return post[v];
        }
    
        public Iterable<Integer> post() {
            return postorder;
        }
    
        public Iterable<Integer> pre() {
            return preorder;
        }
    
        public Iterable<Integer> reversePost() {
            Stack<Integer> reverse = new Stack<Integer>();
            for (int v : postorder)
                reverse.push(v);
            return reverse;
        } 
    }
    View Code

      顶点可达性问题:是否存在一条从给定顶点V到另一个给定顶点W的路径。

      强连通性:如果两个顶点V和W是互相可达的,则称它们为强连通。强连通具有以下性质:

    1. 自反性:任意顶点V和自己都是强连通的。
    2. 对称性:如果V和W是强连通的,那么W和V也是强连通的。
    3. 传递性:如果V和W是强连通的且W和X是强连通的,那么V和X是强连通的。

      强连通分量:每个部分都是互为强连通的顶点的最大子集组成。

    Kosaraju算法

    /******************************************************************************
     *  Compilation:  javac KosarajuSharirSCC.java
     *  Execution:    java KosarajuSharirSCC filename.txt
     *  Dependencies: Digraph.java TransitiveClosure.java StdOut.java In.java
     *  Data files:   http://algs4.cs.princeton.edu/42digraph/tinyDG.txt
     *
     *  Compute the strongly-connected components of a digraph using the
     *  Kosaraju-Sharir algorithm.
     *
     *  Runs in O(E + V) time.
     *
     *  % java KosarajuSCC tinyDG.txt
     *  5 components
     *  1 
     *  0 2 3 4 5 
     *  9 10 11 12 
     *  6 8 
     *  7
     *
     *  % java KosarajuSharirSCC mediumDG.txt 
     *  10 components
     *  21 
     *  2 5 6 8 9 11 12 13 15 16 18 19 22 23 25 26 28 29 30 31 32 33 34 35 37 38 39 40 42 43 44 46 47 48 49 
     *  14 
     *  3 4 17 20 24 27 36 
     *  41 
     *  7 
     *  45 
     *  1 
     *  0 
     *  10 
     *
     *  % java -Xss50m KosarajuSharirSCC mediumDG.txt 
     *  25 components
     *  7 11 32 36 61 84 95 116 121 128 230   ...
     *  28 73 80 104 115 143 149 164 184 185  ...
     *  38 40 200 201 207 218 286 387 418 422 ...
     *  12 14 56 78 87 103 216 269 271 272    ...
     *  42 48 112 135 160 217 243 246 273 346 ...
     *  46 76 96 97 224 237 297 303 308 309   ...
     *  9 15 21 22 27 90 167 214 220 225 227  ...
     *  74 99 133 146 161 166 202 205 245 262 ...
     *  43 83 94 120 125 183 195 206 244 254  ...
     *  1 13 54 91 92 93 106 140 156 194 208  ...
     *  10 39 67 69 131 144 145 154 168 258   ...
     *  6 52 66 113 118 122 139 147 212 213   ...
     *  8 127 150 182 203 204 249 367 400 432 ...
     *  63 65 101 107 108 136 169 170 171 173 ...
     *  55 71 102 155 159 198 228 252 325 419 ...
     *  4 25 34 58 70 152 172 196 199 210 226 ...
     *  2 44 50 88 109 138 141 178 197 211    ...
     *  57 89 129 162 174 179 188 209 238 276 ...
     *  33 41 49 119 126 132 148 181 215 221  ...
     *  3 18 23 26 35 64 105 124 157 186 251  ...
     *  5 16 17 20 31 47 81 98 158 180 187    ...
     *  24 29 51 59 75 82 100 114 117 134 151 ...
     *  30 45 53 60 72 85 111 130 137 142 163 ...
     *  19 37 62 77 79 110 153 352 353 361    ...
     *  0 68 86 123 165 176 193 239 289 336   ...
     *
     ******************************************************************************/
    
    /**
     *  The <tt>KosarajuSharirSCC</tt> class represents a data type for 
     *  determining the strong components in a digraph.
     *  The <em>id</em> operation determines in which strong component
     *  a given vertex lies; the <em>areStronglyConnected</em> operation
     *  determines whether two vertices are in the same strong component;
     *  and the <em>count</em> operation determines the number of strong
     *  components.
    
     *  The <em>component identifier</em> of a component is one of the
     *  vertices in the strong component: two vertices have the same component
     *  identifier if and only if they are in the same strong component.
    
     *  <p>
     *  This implementation uses the Kosaraju-Sharir algorithm.
     *  The constructor takes time proportional to <em>V</em> + <em>E</em>
     *  (in the worst case),
     *  where <em>V</em> is the number of vertices and <em>E</em> is the number of edges.
     *  Afterwards, the <em>id</em>, <em>count</em>, and <em>areStronglyConnected</em>
     *  operations take constant time.
     *  For alternate implementations of the same API, see
     *  {@link TarjanSCC} and {@link GabowSCC}.
     *  <p>
     *  For additional documentation,
     *  see <a href="http://algs4.cs.princeton.edu/42digraph">Section 4.2</a> of
     *  <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
     *
     *  @author Robert Sedgewick
     *  @author Kevin Wayne
     */
    public class KosarajuSharirSCC {
        private boolean[] marked;     // marked[v] = has vertex v been visited?
        private int[] id;             // id[v] = id of strong component containing v
        private int count;            // number of strongly-connected components
    
        /**
         * Computes the strong components of the digraph <tt>G</tt>.
         * @param G the digraph
         */
        public KosarajuSharirSCC(Digraph G) {
    
            // compute reverse postorder of reverse graph
            DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
    
            // run DFS on G, using reverse postorder to guide calculation
            marked = new boolean[G.V()];
            id = new int[G.V()];
            for (int v : dfs.reversePost()) {
                if (!marked[v]) {
                    dfs(G, v);
                    count++;
                }
            }
    
            // check that id[] gives strong components
            assert check(G);
        }
    
        // DFS on graph G
        private void dfs(Digraph G, int v) { 
            marked[v] = true;
            id[v] = count;
            for (int w : G.adj(v)) {
                if (!marked[w]) dfs(G, w);
            }
        }
    
        /**
         * Returns the number of strong components.
         * @return the number of strong components
         */
        public int count() {
            return count;
        }
    
        /**
         * Are vertices <tt>v</tt> and <tt>w</tt> in the same strong component?
         * @param v one vertex
         * @param w the other vertex
         * @return <tt>true</tt> if vertices <tt>v</tt> and <tt>w</tt> are in the same
         *     strong component, and <tt>false</tt> otherwise
         */
        public boolean stronglyConnected(int v, int w) {
            return id[v] == id[w];
        }
    
        /**
         * Returns the component id of the strong component containing vertex <tt>v</tt>.
         * @param v the vertex
         * @return the component id of the strong component containing vertex <tt>v</tt>
         */
        public int id(int v) {
            return id[v];
        }
    
        // does the id[] array contain the strongly connected components?
        private boolean check(Digraph G) {
            TransitiveClosure tc = new TransitiveClosure(G);
            for (int v = 0; v < G.V(); v++) {
                for (int w = 0; w < G.V(); w++) {
                    if (stronglyConnected(v, w) != (tc.reachable(v, w) && tc.reachable(w, v)))
                        return false;
                }
            }
            return true;
        }
    
        /**
         * Unit tests the <tt>KosarajuSharirSCC</tt> data type.
         */
        public static void main(String[] args) {
            In in = new In(args[0]);
            Digraph G = new Digraph(in);
            KosarajuSharirSCC scc = new KosarajuSharirSCC(G);
    
            // number of connected components
            int m = scc.count();
            StdOut.println(m + " components");
    
            // compute list of vertices in each strong component
            Queue<Integer>[] components = (Queue<Integer>[]) new Queue[m];
            for (int i = 0; i < m; i++) {
                components[i] = new Queue<Integer>();
            }
            for (int v = 0; v < G.V(); v++) {
                components[scc.id(v)].enqueue(v);
            }
    
            // print results
            for (int i = 0; i < m; i++) {
                for (int v : components[i]) {
                    StdOut.print(v + " ");
                }
                StdOut.println();
            }
    
        }
    
    }
    View Code
  • 相关阅读:
    [Swift]LeetCode773. 滑动谜题 | Sliding Puzzle
    [Swift]LeetCode771. 宝石与石头 | Jewels and Stones
    [Swift]LeetCode770. 基本计算器 IV | Basic Calculator IV
    [Swift]LeetCode769. 最多能完成排序的块 | Max Chunks To Make Sorted
    [Swift]LeetCode768. 最多能完成排序的块 II | Max Chunks To Make Sorted II
    转 玩转Bash变量
    转 shell脚本学习指南
    转: 两个 Shell 网站: explainshell 和 shellcheck
    转 BAT CMD 批处理文件脚本总结(中文)
    转 windows 下 Oracle 导出表结构
  • 原文地址:https://www.cnblogs.com/wxgblogs/p/5708605.html
Copyright © 2011-2022 走看看