zoukankan      html  css  js  c++  java
  • 最优二叉查找树

    最优二叉查找树:

    给定n个互异的关键字组成的序列K=<k1,k2,...,kn>,且关键字有序(k1<k2<...<kn),我们想从这些关键字中构造一棵二叉查找树。对每个关键字ki,一次搜索搜索到的概率为pi。可能有一些搜索的值不在K内,因此还有n+1个“虚拟键”d0,d1,...,dn,他们代表不在K内的值。具体:d0代表所有小于k1的值,dn代表所有大于kn的值。而对于i = 1,2,...,n-1,虚拟键di代表所有位于ki和ki+1之间的值。对于每个虚拟键,一次搜索对应于di的概率为qi。要使得查找一个节点的期望代价(代价可以定义为:比如从根节点到目标节点的路径上节点数目)最小,就需要建立一棵最优二叉查找树。

                               

                         

    已知每个关键字以及虚拟键被搜索到的概率,可以计算出一个给定二叉查找树内一次搜索的期望代价。假设一次搜索的实际代价为检查的节点的个数,即所发现的节点的深度加1.计算一次搜索的期望代价等式为:

                       

     建立一棵二叉查找树,期望搜索代价最小,那么这棵二叉查找树就是最优二叉查找树

     还有:

                        

    最优子结构:

    如果一棵最优二叉查找树T有一棵包含关键字ki,..,kj的子树T',那么这可子树T'对于关键字Ki,...,kj和虚拟键di-1,...dj的子问题也必定是最优的。

    给定关键字ki,...,kj,假设kr(i<=r<=j)是包含这些键的一棵最优子树的根。其左子树包含关键字ki,...,kr-1和虚拟键di-1,...,dr-1,右子树包含关键字kr+1,...,kj和虚拟键dr,...dj。我们检查所有的候选根kr,就保证可以找到一棵最优二叉查找树。

    一个递归解:

    定义e[i,j]为包含关键字ki,...,kj的最优二叉查找树的期望代价,最终要计算的是e[1,n]。

    当j = i - 1时,此时子树中只有虚拟键,期望搜索代价为e[i,i - 1] = qi-1.

    当j >= i时,需要从ki,...,kj中选择一个根kr,然后分别构造其左子树和右子树。下面需要计算以kr为根的树的期望搜索代价。然后选择导致最小期望搜索代价的kr做根。

    子树中每个节点深度都增加1.期望搜索代价增加量为子树中所有概率的总和。

    对一棵关键字ki,...,kj的子树,所有概率之和为:

                        

    以kr为根的子树的期望搜索代价为:

                        

    注意:

                         

    因此e[i][j]可以重写为:

                          

    最终可得递归公式:

                        

    实现代码:

    package obst;
    
    /**
     *最优二叉搜索树
     *@author wxisme
     *@time 2015-10-22 下午8:06:04
     */
    public class Solve_obst {
        
        public static int[][] e;
        public static int[][] w;
        public static int[] p;
        public static int[] q;
        public static int[][] root;
        
        
        public static void optional_bst() {
            
            int n = p.length+1;
            e = new int[n+1][n];
            w = new int[n+1][n];
            root = new int[n][n];
            
            for(int i=1; i<=n; i++) {
                e[i][i-1] = q[i-1];
                w[i][i-1] = q[i-1];
            }
            
            for(int l=1; l<=n; l++) {
                for(int i=l; i<=n-l+1; i++) {
                    int j = i+l-1;
                    e[i][j] = Integer.MAX_VALUE;
                    w[i][j] = w[i][j-1] + p[i] +q[j];
                    for(int r=i; r<=j; r++) {
                        int t = w[i][r-1] + e[r+1][j] + w[i][j];
                        if(t < e[i][j]) {
                            e[i][j] = t;
                            root[i][j] = r;
                        }
                    }
                }
            }
            
        }
    
    }

    将e,w,root对角线旋转到水平方向。如下图:

                      

    时间复杂度为O(n^3)

    FROM 算法导论

  • 相关阅读:
    无线安全课堂:手把手教会你搭建伪AP接入点
    转载——开阔自己的视野,勇敢的接触新知识
    关于系统架构的一些总结
    MessageBox.Show()如何换行
    不患寡而患不均
    由CHAR(2)引发的BUG
    DataRow.RowState 属性
    C# 使用TimeSpan计算两个时间差
    利用反射调出其他项目的界面
    DB2 中将date类型的转换成timestamp
  • 原文地址:https://www.cnblogs.com/wxisme/p/4902742.html
Copyright © 2011-2022 走看看