zoukankan      html  css  js  c++  java
  • 【状压dp】Islands and Bridges

    Islands and Bridges
    Time Limit: 4000MS   Memory Limit: 65536K
    Total Submissions: 11034   Accepted: 2866

    Description

    Given a map of islands and bridges that connect these islands, a Hamilton path, as we all know, is a path along the bridges such that it visits each island exactly once. On our map, there is also a positive integer value associated with each island. We call a Hamilton path the best triangular Hamilton path if it maximizes the value described below. 

    Suppose there are n islands. The value of a Hamilton path C1C2...Cn is calculated as the sum of three parts. Let Vi be the value for the island Ci. As the first part, we sum over all the Vi values for each island in the path. For the second part, for each edge CiCi+1 in the path, we add the product Vi*Vi+1. And for the third part, whenever three consecutive islands CiCi+1Ci+2 in the path forms a triangle in the map, i.e. there is a bridge between Ci and Ci+2, we add the product Vi*Vi+1*Vi+2

    Most likely but not necessarily, the best triangular Hamilton path you are going to find contains many triangles. It is quite possible that there might be more than one best triangular Hamilton paths; your second task is to find the number of such paths. 

    Input

    The input file starts with a number q (q<=20) on the first line, which is the number of test cases. Each test case starts with a line with two integers n and m, which are the number of islands and the number of bridges in the map, respectively. The next line contains n positive integers, the i-th number being the Vi value of island i. Each value is no more than 100. The following m lines are in the form x y, which indicates there is a (two way) bridge between island x and island y. Islands are numbered from 1 to n. You may assume there will be no more than 13 islands. 
     

    Output

    For each test case, output a line with two numbers, separated by a space. The first number is the maximum value of a best triangular Hamilton path; the second number should be the number of different best triangular Hamilton paths. If the test case does not contain a Hamilton path, the output must be `0 0'. 

    Note: A path may be written down in the reversed order. We still think it is the same path.
     

    Sample Input

    2
    3 3
    2 2 2
    1 2
    2 3
    3 1
    4 6
    1 2 3 4
    1 2
    1 3
    1 4
    2 3
    2 4
    3 4
    

    Sample Output

    22 3
    69 1
    

    Source

     
    题目大意:有N个岛屿,M条边,经过所有的岛屿使点权和最大。对于一个点i和上一个点j的贡献是C[i]+C[j]+C[i]*C[j],特别地,对于构成三角形的一个点i和上一个点j、上上个点k对答案的特别贡献是C[i]*C[j]*C[k](在原来的基础上),并输出有多少条不同的路径(倒过来的两条路径算作一条)
    试题分析:dp[S][i][j]表示当前走过的集合是S,现在在i,上一个在j的最大点权和,直接写就好了。需要注意long long以及N=1的情况。
     
    代码:
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<vector>
    #include<queue>
    #include<stack>
    #include<algorithm>
    using namespace std;
    #define LL long long
    inline LL read(){
    	LL x=0,f=1;char c=getchar();
    	for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
    	for(;isdigit(c);c=getchar()) x=x*10+c-'0';
    	return x*f;
    }
    
    const int MAXN=100001;
    const int INF=999999;
    int N,M;
    int T; 
    LL C[101];
    bool e[101][101];
    LL dp[9001][15][15];
    LL num[9001][15][15];
    
    int main(){
    	T=read();
    	while(T--){
    		LL ans=0;
    		memset(e,false,sizeof(e));
    		memset(dp,-1,sizeof(dp));
    		memset(num,0,sizeof(num));
    		N=read(),M=read();
    		for(int i=1;i<=N;i++) C[i]=read();
    	    for(int i=1;i<=M;i++){
    	    	int u=read(),v=read();
    	    	e[u][v]=e[v][u]=true;
    		}
    		if(N==1){
    			printf("%lld %lld
    ",C[1],1);
    			continue;
    		}
    		for(int i=1;i<=N;i++) 
    		    for(int j=1;j<=N;j++)
    		        if(i!=j&&e[i][j]) {
    				    dp[(1<<(i-1))+(1<<(j-1))][i][j]=(long long)C[i]+C[j]+C[i]*C[j];
    				    num[(1<<(i-1))+(1<<(j-1))][i][j]=1;
    				}
    		for(int i=0;i<(1<<N);i++){
    			for(int j=1;j<=N;j++){
    			    if(!((i>>(j-1))&1)) continue;
    			    for(int k=1;k<=N;k++){
    			    	if(k==j||!e[k][j]||!((i>>(k-1))&1)) continue;
    			    	for(int p=1;p<=N;p++){
    			    		if(!((i>>(p-1))&1)||p==k||p==j||!e[p][k]) continue;
    			    		if(dp[i-(1<<(j-1))][k][p]==-1) continue;
    			    		LL t1=(long long)dp[i-(1<<(j-1))][k][p]+C[j]*C[k]+C[j];
    			    		if(e[p][j]) t1=(long long)dp[i-(1<<(j-1))][k][p]+C[j]*C[k]+C[j]*C[k]*C[p]+C[j];
    			    		if(t1>dp[i][j][k]){
    			    			dp[i][j][k]=t1;
    			    			num[i][j][k]=num[i-(1<<(j-1))][k][p];
    						}
    						else if(dp[i][j][k]==t1) num[i][j][k]+=num[i-(1<<(j-1))][k][p];
    				    }
    				} 
    			}
    		}
    		LL tmp=0;
    		for(int i=1;i<=N;i++) 
    		    for(int j=1;j<=N;j++) 
    			    if(i!=j) 
    				    if(ans<dp[(1<<N)-1][i][j]) ans=dp[(1<<N)-1][i][j],tmp=num[(1<<N)-1][i][j];
    				    else if(ans==dp[(1<<N)-1][i][j]) tmp+=num[(1<<N)-1][i][j];
    		printf("%lld %lld
    ",ans,tmp/2);
    	}
    }
    

      

  • 相关阅读:
    用优先级队列实现先进先出队列;
    c#入门经典(第三版) 练习6.8(5)
    请给出一个时间为O(nlgk)、用来将k个已排序链表的算法。此处n为所有输入链表中元素的总数。
    计数排序
    Heap_delete(A,i)操作将结点i中的想从堆A中删去。对含n个元素的最大堆,请给出时间为O(lgn)的HEAPDELETE的实现。
    堆排序
    请给出一个算法,使之对于给定的介于0到k之间的n个整数进行预处理,并能在O(1)时间内,回答出输入的整数中有多少个落在区间[a..b]内,你给出的算法上预处理时间应是O(n+k)。
    sql存储过程传多个id查询,使用in
    SQL使用语句修改列及表名
    泛型约束使用?有些不知道叫什么好!
  • 原文地址:https://www.cnblogs.com/wxjor/p/7266112.html
Copyright © 2011-2022 走看看