zoukankan      html  css  js  c++  java
  • spark(03)

     

    map遍历每一个元素

    mapPartitions每次遍历一个分区

    foreach action算子

    foreachPartitions action算子

    collect

    nginx  flume  hdfs  hbase  spark  mysql

    如果是插入数据,那么foreachPartition比较好,因为每个分区建立一个连接

    提交的一个任务中,存在几个job? action算子有几个就存在几个job

    reduce得出一个结果

    scala> sc.makeRDD(arr,2)

    res0: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at makeRDD at <console>:27

    scala> res0.reduce(_+_)

    res1: Int = 21     

    count算子

    scala> res0.count

    res2: Long = 6     

    first

    scala> res0.first

    res4: Int = 1

    take算子

    scala> sc.makeRDD(arr,3)

    res9: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at makeRDD at <console>:27

    scala> res9.take(2)

    res10: Array[Int] = Array(1, 2)

    scala> res9.take(4)

    res11: Array[Int] = Array(1, 2, 3, 4)

    take算子可以产生多个job

    take算子每次提交任务的时候都是sc.runJob,扫描的元素个数和总的元素个数比对,扫描的分区数量和总的分区数量比对

    top算子

    scala> res9.top(3)

    res14: Array[Int] = Array(9, 8, 7)     

    先将数据进行排序,然后倒序截取前N

    takeOrdered正序排序,然后截取前N

    scala> res9.takeOrdered(3)

    res15: Array[Int] = Array(1, 2, 3)

    countByKey按照key得出value的数量

    scala> var arr = Array(("a",1),("b",1),("a",1))

    arr: Array[(String, Int)] = Array((a,1), (b,1), (a,1))

    scala> sc.makeRDD(arr,3)

    res16: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[4] at makeRDD at <console>:27

    scala> res16.countByKey()

    res17: scala.collection.Map[String,Long] = Map(a -> 2, b -> 1)  

    collect将数据收集到driver端,一般都是为了测试显示 Array

    collectAsMap 将数据从executors端收集到driver端。Map

    scala> res9.collect

    res18: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)

    scala> res9.collectAsMap

    <console>:29: error: value collectAsMap is not a member of org.apache.spark.rdd.RDD[Int]

           res9.collectAsMap

                ^

    scala> res16.collectAsMap

    res20: scala.collection.Map[String,Int] = Map(b -> 1, a -> 1)

    算子在executor中执行的原理和过程

     

    rdd是一个弹性的分布式的数据集,默认带有分区的,每个分区会被一个线程处理

    rdd中存在数据?

     

    sortBy排序

    scala> res27.collect

    res30: Array[Int] = Array(1, 2, 3, 4, 6, 7, 9)                                  

    scala> res26.sortBy(t=>t,false,4)

    res31: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[27] at sortBy at <console>:29

    scala> res31.partitions.size

    res32: Int = 4

    sortBy可以改变分区数量,同时排序可以正序和倒序,并且带有shuffle

    sortByKey按照key进行排序

    scala> var arr = Array((1,2),(2,1),(3,3),(6,9),(5,0))

    arr: Array[(Int, Int)] = Array((1,2), (2,1), (3,3), (6,9), (5,0))

    scala> sc.makeRDD(arr,3)

    res33: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[28] at makeRDD at <console>:27

    scala> res33.sortByKey()

    res34: org.apache.spark.rdd.RDD[(Int, Int)] = ShuffledRDD[31] at sortByKey at <console>:29

    scala> res34.collect

    res35: Array[(Int, Int)] = Array((1,2), (2,1), (3,3), (5,0), (6,9))

    scala> res33.sortByKey

       def sortByKey(ascending: Boolean,numPartitions: Int): org.apache.spark.rdd.RDD[(Int, Int)]

    scala> res33.sortByKey(false)

    res36: org.apache.spark.rdd.RDD[(Int, Int)] = ShuffledRDD[34] at sortByKey at <console>:29

    scala> res36.collect

    res37: Array[(Int, Int)] = Array((6,9), (5,0), (3,3), (2,1), (1,2))

    scala> res33.sortByKey(false,10)

    res38: org.apache.spark.rdd.RDD[(Int, Int)] = ShuffledRDD[37] at sortByKey at <console>:29

    scala> res38.partitions,size

    <console>:1: error: ';' expected but ',' found.

    res38.partitions,size

                    ^

    scala> res38.partitions.size

    res39: Int = 6

    scala> res33.partitions.size

    res40: Int = 3

    scala> res38.partitions.size

    res41: Int = 6

    sortBykey产生shuffle,他的分区器就是rangePartitioner groupByKey reduceBykey他们的分区器都是hashPartitioner

    比如:sortByKey它的分区器是rangePartitioner,这个分区器是按照范围和数据量进行自适配的,如果元素个数大于等于分区的个数,这样的分区不会产生差别,如果数据量比分区数量还要小,那么指定的分区个数和真正的分区个数就会产生差别

    union intersection subtract

    scala> var arr = Array(1,2,3,4,5)

    arr: Array[Int] = Array(1, 2, 3, 4, 5)

    scala> var arr1 = Array(3,4,5,6,7)

    arr1: Array[Int] = Array(3, 4, 5, 6, 7)

    scala> sc.makeRDD(arr)

    res42: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[38] at makeRDD at <console>:27

    scala> sc.makeRDD(arr1)

    res43: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[39] at makeRDD at <console>:27

    scala> res42 union res41

    <console>:35: error: type mismatch;

     found   : Int

     required: org.apache.spark.rdd.RDD[Int]

           res42 union res41

                       ^

    scala> res42 union res43

    res45: org.apache.spark.rdd.RDD[Int] = UnionRDD[40] at union at <console>:33

    scala> res45.collect

    res46: Array[Int] = Array(1, 2, 3, 4, 5, 3, 4, 5, 6, 7)              

    union只是结果集的联合,没有任何业务逻辑,所以分区数量是两个rdd的分区数量总和

    scala> res42 intersection res43

    res47: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[46] at intersection at <console>:33

    scala> res47.collect

    res48: Array[Int] = Array(3, 4, 5)                                              

    scala> res42 substract res43

    <console>:33: error: value substract is not a member of org.apache.spark.rdd.RDD[Int]

           res42 substract res43

                 ^

    scala> res42 subtract res43

    res50: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[50] at subtract at <console>:33

    scala> res50.collect

    res51: Array[Int] = Array(1, 2)  

    交集和差集都是原来分区中的数据,所以分区数量不会改变

    scala> var arr = Array(1,1,1,1,1,12,2,3,3,3,3,3,4,4,4,4,4)

    arr: Array[Int] = Array(1, 1, 1, 1, 1, 12, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4)

    scala> sc.makeRDD(arr,3)

    res52: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[51] at makeRDD at <console>:27

    scala> res52.distinct

    res53: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[54] at distinct at <console>:29

    scala> res53.collect

    res54: Array[Int] = Array(3, 12, 4, 1, 2)

    distinct

    使用groupbyKey

    scala> res52.map((_,null))

    res55: org.apache.spark.rdd.RDD[(Int, Null)] = MapPartitionsRDD[55] at map at <console>:29

    scala> res55.groupByKey()

    res56: org.apache.spark.rdd.RDD[(Int, Iterable[Null])] = ShuffledRDD[56] at groupByKey at <console>:31

    scala> res55.map(_._1)

    res57: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[57] at map at <console>:31

    scala> res57.collect

    res58: Array[Int] = Array(1, 1, 1, 1, 1, 12, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4)

    scala> res56.map(_._1)

    res59: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[58] at map at <console>:33

    scala> res59.collect

    res60: Array[Int] = Array(3, 12, 4, 1, 2)

    使用reduceByKey

    scala> res52.map((_,null))

    res61: org.apache.spark.rdd.RDD[(Int, Null)] = MapPartitionsRDD[59] at map at <console>:29

    scala> res61.reduceByKey((a,b)=>a)

    res62: org.apache.spark.rdd.RDD[(Int, Null)] = ShuffledRDD[60] at reduceByKey at <console>:31

    scala> res62.map(_._1)

    res63: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[61] at map at <console>:33

    scala> res63.collect

    res64: Array[Int] = Array(3, 12, 4, 1, 2)

    scala> res52.distinct(10)

    res66: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[64] at distinct at <console>:29

    scala> res66.partitions.size

    res67: Int = 10

    作业题:

    http://bigdata.edu360.cn/laozhang

    http://bigdata.edu360.cn/laozhang

    http://bigdata.edu360.cn/laozhao

    http://bigdata.edu360.cn/laozhao

    http://bigdata.edu360.cn/laozhao

    http://bigdata.edu360.cn/laoduan

    http://bigdata.edu360.cn/laoduan

    http://javaee.edu360.cn/xiaoxu

    http://javaee.edu360.cn/xiaoxu

    http://javaee.edu360.cn/laoyang

    http://javaee.edu360.cn/laoyang

    http://javaee.edu360.cn/laoyang

    http://bigdata.edu360.cn/laozhao

    全局topN,整个学校里面的老师访问的排名的前几个(不区分专业)

    学科topN,每个专业的老师的排名前几个?

    第一种分组方式 第二种过滤器的方式

    object aTest{
      def main(args: Array[String]): Unit = {
        val topN=3
        val conf =new SparkConf()
        conf.setAppName("teacher")
        conf.setMaster("local[*]")
        val sc =new SparkContext(conf)
        val rdd:RDD[String]=sc.textFile("teacher.log")
        val rdd1:RDD[(String,String)]=rdd.map(t=>{
          val teacher =t.substring(t.lastIndexOf("/")+1)
          val url =new URL(t)
          val subject=url.getHost.split("\.")(0)
          (subject,teacher)
        })
     val rdd2:RDD[((String,String),Int)]=rdd1.map((_,1))
    val rdd3:RDD[((String,String),Int)]=rdd2.reduceByKey(_+_)
        val rdd4=rdd3.sortBy(_._2,false)
        val result :Array[((String,String),Int)]=rdd4.take(topN)
        result.foreach(println)
        val subjects:Array[String]=rdd1.map(_._1).distinct().collect()
        subjects.foreach(t=>{
          val rddsubject:RDD[((String,String),Int)]=rdd3.filter(_._1._1.equals(t))
          val sortRDD:Array[((String,String),Int)]=rddsubject.sortBy(-_._2).take(topN)
          sortRDD.foreach(println)
        })


      }
    }

    join  leftOuterJoin  rightOuterJoin  cogroup

    以上是join的关联操作,rdd必须是对偶元组的

    scala> var arr = Array(("zhangsan",200),("lisi",250),("zhaosi",300),("wangwu",400))

    arr: Array[(String, Int)] = Array((zhangsan,200), (lisi,250), (zhaosi,300), (wangwu,400))

    scala> var arr1 = Array(("zhangsan",30),("lisi",25),("zhaosi",12),("liuneng",5))

    arr1: Array[(String, Int)] = Array((zhangsan,30), (lisi,25), (zhaosi,12), (liuneng,5))

    scala> sc.makeRDD(arr,3)

    res68: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[65] at makeRDD at <console>:27

    scala> sc.makeRDD(arr1,3)

    res69: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[66] at makeRDD at <console>:27

    scala> res68 join res69

    res70: org.apache.spark.rdd.RDD[(String, (Int, Int))] = MapPartitionsRDD[69] at join at <console>:33

    scala> res70.collect

    res71: Array[(String, (Int, Int))] = Array((zhangsan,(200,30)), (lisi,(250,25)), (zhaosi,(300,12)))

    scala> res68 leftOuterJoin res69

    res72: org.apache.spark.rdd.RDD[(String, (Int, Option[Int]))] = MapPartitionsRDD[72] at leftOuterJoin at <console>:33

    scala> res72.collect

    res73: Array[(String, (Int, Option[Int]))] = Array((zhangsan,(200,Some(30))), (wangwu,(400,None)), (lisi,(250,Some(25))), (zhaosi,(300,Some(12))))

    scala> res68 rightOuterJoin res69

    res74: org.apache.spark.rdd.RDD[(String, (Option[Int], Int))] = MapPartitionsRDD[75] at rightOuterJoin at <console>:33

    scala> res74.collect

    res75: Array[(String, (Option[Int], Int))] = Array((zhangsan,(Some(200),30)), (lisi,(Some(250),25)), (zhaosi,(Some(300),12)), (liuneng,(None,5)))

    scala> res68 cogroup res69

    res76: org.apache.spark.rdd.RDD[(String, (Iterable[Int], Iterable[Int]))] = MapPartitionsRDD[77] at cogroup at <console>:33

    scala> res76.collect

    res77: Array[(String, (Iterable[Int], Iterable[Int]))] = Array((zhangsan,(CompactBuffer(200),CompactBuffer(30))), (wangwu,(CompactBuffer(400),CompactBuffer())), (lisi,(CompactBuffer(250),CompactBuffer(25))), (zhaosi,(CompactBuffer(300),CompactBuffer(12))), (liuneng,(CompactBuffer(),CompactBuffer(5))))

  • 相关阅读:
    计算器修正代码
    AsEnumrable和AsQueryable的区别
    c# 解释器模式与sping.net表达式的结合应用(金融里经常需要用到公式,这个公式是抽象的需要自己解释)
    Spring.net 间接调用被AOP拦截的方法失效(无法进入aop的拦截方法)
    信息熵公式的由来(转)
    期望风险、经验风险与结构风险之间的关系(转)
    梯度(转)
    奇特的数学问题(转)
    最大似然估计和最大后验估计(转)
    贝叶斯思想以及与最大似然估计、最大后验估计的区别(转)
  • 原文地址:https://www.cnblogs.com/wxk161640207382/p/11309064.html
Copyright © 2011-2022 走看看