zoukankan      html  css  js  c++  java
  • tensorflow-gpu2.1.0报错 so returning NUMA node zero解决办法

    >>> print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
    2020-06-06 10:14:08.927485: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
    2020-06-06 10:14:08.950893: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2793605000 Hz
    2020-06-06 10:14:08.951424: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x562e7913f720 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
    2020-06-06 10:14:08.951449: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
    2020-06-06 10:14:08.953797: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
    2020-06-06 10:14:09.223937: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2020-06-06 10:14:09.224406: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x562e792142e0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
    2020-06-06 10:14:09.224427: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): GeForce GTX 950M, Compute Capability 5.0
    2020-06-06 10:14:09.224580: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2020-06-06 10:14:09.224939: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] Found device 0 with properties:
    pciBusID: 0000:01:00.0 name: GeForce GTX 950M computeCapability: 5.0
    coreClock: 1.124GHz coreCount: 5 deviceMemorySize: 3.95GiB deviceMemoryBand 26.82GiB/s
    2020-06-06 10:14:09.225192: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
    2020-06-06 10:14:09.227247: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
    2020-06-06 10:14:09.228516: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
    2020-06-06 10:14:09.228872: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
    2020-06-06 10:14:09.230221: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
    2020-06-06 10:14:09.231062: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
    2020-06-06 10:14:09.233700: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
    2020-06-06 10:14:09.233878: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2020-06-06 10:14:09.234374: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2020-06-06 10:14:09.234811: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] Adding visible gpu devices: 0
    2020-06-06 10:14:09.263649: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
    2020-06-06 10:14:09.286790: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1096] Device interconnect StreamExecutor with strength 1 edge matrix:
    2020-06-06 10:14:09.287059: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102]      0
    2020-06-06 10:14:09.287107: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] 0:   N
    2020-06-06 10:14:09.303423: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2020-06-06 10:14:09.303947: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2020-06-06 10:14:09.304356: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1241] Created TensorFlow device (/device:GPU:0 with 3708 MB memory) -> physical GPU (device: 0, name: GeForce GTX 950M, pci bus id: 0000:01:00.0, compute capability: 5.0)
    Default GPU Device: /device:GPU:0

    解决办法:

    在代码中添加一下两行

    import os

    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

  • 相关阅读:
    Content delivery network
    散列算法的基础原理 确保资料传递无误
    科学计算 NumPy 与C语言对比 N-dimensional array ndarray 元素元素操作 计算正太分布分位数 ndarray中的所有元素的类型都是相同的,而Python列表中的元素类型是任意的,所以ndarray在存储元素时内存可以连续,而python原生list就只能通过寻址方式找到下一个元素
    t
    百度 url 当在baidu搜索结果展示页,去点击标头时
    指定文件夹 指定文件后缀名 删除整个文件夹 git 冲突解决 create a new repository on the command line push an existing repository from the command line rebase
    修改MojoWeixin 只保留用户name 取消群昵称
    AnyEvent::HTTP 介绍
    AnyEvent::HTTP 介绍
    异步和同步http请求超时机制
  • 原文地址:https://www.cnblogs.com/wxkang/p/13053782.html
Copyright © 2011-2022 走看看