zoukankan      html  css  js  c++  java
  • 知识图谱和图卷积(贪心学院)——学习笔记

    一、为什么要图卷积?

    层级结构:每一层的训练结果依赖于上一层的。

    图像二维数据,语音一维数据可以二维表示。可通过欧几里得空间数据进行表示。

    然而也有无法表示的,例如微信数据里的人与人之间关系,图(无距离信息,空间信息)。因而出现了图卷积。

     

     

     

     频域与时域两条线,GCN可以用于时域的处理。

     二、图卷积基本框架:

    5个点,形成5x5的邻接矩阵。形容两两之间是否有一条边,矩阵是对称的,看一半就行。

     两个矩阵,输入邻接矩阵,点乘特征矩阵,更新特征矩阵,使其收敛(求内积)。

     

     

     图卷积中,加入了邻接矩阵的信息。更新H(l+1)。

    存在问题:对角线为0,无法提取自身信息。解决:引入D矩阵,度矩阵,统计各节点有几条边。D^-1/2是对D求逆,开根号。

    D-A:度矩阵减邻接矩阵是拉普拉斯矩阵。

    CNN权重是随机产生的。GCN的W权重不是很重要。W矩阵是自适应的更新。

    核心:两个矩阵。

    特征提取:已经很成熟了。

     边变点。点变边。

     

     

     

     三、知识图谱

     

     

    蓝色点为用户1感兴趣的点,黄色的是没观察到的用户感兴趣的点,灰色的是没观察到的用户不感兴趣的点。

    目的是给用户推荐黄色的,不推荐灰色的。

    标签顺滑:

     

     

     

     

     

     

     

     

     

     

     

    网址:https://live.bilibili.com/11869202

  • 相关阅读:
    JavaScript事件阶段
    JavaScript阻止事件冒泡
    JavaScript事件冒泡
    JavaScript简单的随机点名系统
    理解Android线程创建流程
    SurfaceFlinger启动篇
    Android系统启动-zygote篇
    Android系统启动-Init篇
    Android系统启动-SystemServer下篇
    Android系统启动-SystemServer上篇
  • 原文地址:https://www.cnblogs.com/wxl845235800/p/12930114.html
Copyright © 2011-2022 走看看