一个常数贼大的多项式快速幂做法......
首先看前缀和
有一阶前缀和(sum[n]=sumlimits_{i=1}^n a_i)
构造一个全是(1)的序列(b),那么(sum)自然可以看成(a)与(b)卷积的形式。
同时我们还知道(b)的生成函数的封闭形式是(frac{1}{1-x}),然后(k)阶前缀和就是(a)卷(k)次(b),即乘上(frac{1}{(1-x)^k})。
差分就更好做了...把(a)当成一个(n-1)次多项式的系数(次数从低到高),然后每次差分就相当于乘上((1-x)),(k)次就乘((1-x)^k)
这里(k)很大,不能分治乘法...多项式快速幂算一下就好了。
#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef long long ll;
typedef double db;
typedef pair<int,int> PII;
typedef vector<int> VI;
const int N=1e6+10,mod=1004535809,gn=3;
inline int powmod(int x,int y=mod-2,int m=mod) {
int ret=1; for (;y;y>>=1,x=1ll*x*x%m)
if (y&1) ret=1ll*ret*x%m;
return ret;
}
const int ign=powmod(gn);
inline int add(int x,int y,int m=mod) {return (x+=y)>=m?x-m:x;}
inline int sub(int x,int y,int m=mod) {return (x-=y)<0?x+m:x;}
namespace Poly {
int rev[N];
inline void init(int n) {rep(i,0,n) rev[i]=rev[i>>1]>>1|((i&1)?n>>1:0);}
inline int glim(int n) {int lim=1; while (lim<=n) lim<<=1; return lim;}
void NTT(int *f,int n,int flg) {
rep(i,0,n) if (rev[i]<i) swap(f[i],f[rev[i]]);
for (int len=2,k=1;len<=n;len<<=1,k<<=1) {
int wn=powmod(flg==1?gn:ign,(mod-1)/len);
for (int i=0;i<n;i+=len)
for (int j=i,w=1;j<i+k;j++,w=1ll*w*wn%mod) {
int tmp=1ll*f[j+k]*w%mod;
f[j+k]=sub(f[j],tmp),f[j]=add(f[j],tmp);
}
}
if (flg==-1) {
int inv=powmod(n);
rep(i,0,n) f[i]=1ll*f[i]*inv%mod;
}
}
void Mul(const int *a,const int *b,int lim,int *c) {
static int f[N],g[N]; init(lim);
rep(i,0,lim) f[i]=a[i],g[i]=b[i];
NTT(f,lim,1),NTT(g,lim,1);
rep(i,0,lim) c[i]=1ll*f[i]*g[i]%mod;
NTT(c,lim,-1);
}
void Inv(const int *f,int n,int *g) {
if (n==1) {g[0]=powmod(f[0]);return;}
Inv(f,(n+1)>>1,g);
static int f1[N]; int lim=glim((n-1)<<1); init(lim);
rep(i,0,lim) f1[i]=i<n?f[i]:0,g[i]=i<n?g[i]:0;
NTT(f1,lim,1),NTT(g,lim,1);
rep(i,0,lim) g[i]=1ll*g[i]*sub(2,1ll*f1[i]*g[i]%mod)%mod;
NTT(g,lim,-1);
rep(i,n,lim) g[i]=0;
}
void Derv(const int *f,int n,int *g) {
rep(i,1,n) g[i-1]=1ll*f[i]*i%mod;
g[n-1]=0;
}
void Inte(const int *f,int n,int *g) {
rep(i,0,n) g[i+1]=1ll*f[i]*powmod(i+1)%mod;
g[0]=g[n]=0;
}
void Ln(const int *f,int n,int *g) {
static int derf[N],invf[N],derg[N];
Derv(f,n,derf),Inv(f,n,invf);
int lim=glim((n-1)<<1);
rep(i,n,lim) derf[i]=invf[i]=0;
Mul(derf,invf,lim,derg);
Inte(derg,n,g);
rep(i,n,lim) g[i]=0;
}
void Exp(const int *f,int n,int *g) {
if (n==1) {g[0]=1;return;}
Exp(f,(n+1)>>1,g);
static int f1[N],lng[N];
Ln(g,n,lng);
int lim=glim((n-1)<<1); init(lim);
rep(i,0,lim) f1[i]=i<n?f[i]:0,g[i]=i<n?g[i]:0;
NTT(g,lim,1),NTT(f1,lim,1),NTT(lng,lim,1);
rep(i,0,lim) g[i]=1ll*g[i]*sub(add(1,f1[i]),lng[i])%mod;
NTT(g,lim,-1);
rep(i,n,lim) g[i]=0;
}
void Pow(const int *f,int n,int k,int *g) {
static int lnf[N]; Ln(f,n,lnf);
rep(i,0,n) lnf[i]=1ll*lnf[i]*k%mod;
Exp(lnf,n,g);
}
}
int a[N],n,k,t,b[N],c[N],ans[N];
inline int read() {
int x=0; char ch; while (!isdigit(ch=getchar()));
while (isdigit(ch)) {x=add(10ll*x%mod,ch-48);ch=getchar();}
return x;
}
int main() {
#ifdef LOCAL
freopen("a.in","r",stdin);
#endif
scanf("%d",&n); k=read(); scanf("%d",&t);
rep(i,0,n) scanf("%d",&a[i]);
if (t==0) c[0]=1,c[1]=mod-1,Poly::Inv(c,n,b);
else b[0]=1,b[1]=mod-1;
memset(c,0,sizeof(c));
Poly::Pow(b,n,k,c);
Poly::Mul(a,c,Poly::glim(2*(n-1)),ans);
rep(i,0,n) printf("%d%c",ans[i],"
"[i==n-1]);
return 0;
}