zoukankan      html  css  js  c++  java
  • [题解] LuoguP5488 差分与前缀和

    一个常数贼大的多项式快速幂做法......

    首先看前缀和

    有一阶前缀和(sum[n]=sumlimits_{i=1}^n a_i)

    构造一个全是(1)的序列(b),那么(sum)自然可以看成(a)(b)卷积的形式。

    同时我们还知道(b)的生成函数的封闭形式是(frac{1}{1-x}),然后(k)阶前缀和就是(a)(k)(b),即乘上(frac{1}{(1-x)^k})

    差分就更好做了...把(a)当成一个(n-1)次多项式的系数(次数从低到高),然后每次差分就相当于乘上((1-x))(k)次就乘((1-x)^k)

    这里(k)很大,不能分治乘法...多项式快速幂算一下就好了。

    #include <bits/stdc++.h>
    using namespace std;
    #define rep(i,a,n) for (int i=a;i<n;i++)
    #define per(i,a,n) for (int i=n-1;i>=a;i--)
    #define pb push_back
    #define mp make_pair
    #define all(x) (x).begin(),(x).end()
    #define fi first
    #define se second
    #define SZ(x) ((int)(x).size())
    typedef long long ll;
    typedef double db;
    typedef pair<int,int> PII;
    typedef vector<int> VI;
    
    const int N=1e6+10,mod=1004535809,gn=3;
    inline int powmod(int x,int y=mod-2,int m=mod) {
        int ret=1; for (;y;y>>=1,x=1ll*x*x%m) 
            if (y&1) ret=1ll*ret*x%m;
        return ret;
    }
    const int ign=powmod(gn);
    inline int add(int x,int y,int m=mod) {return (x+=y)>=m?x-m:x;}
    inline int sub(int x,int y,int m=mod) {return (x-=y)<0?x+m:x;}
    
    namespace Poly {
        int rev[N];
        inline void init(int n) {rep(i,0,n) rev[i]=rev[i>>1]>>1|((i&1)?n>>1:0);}
        inline int glim(int n) {int lim=1; while (lim<=n) lim<<=1; return lim;}
    
        void NTT(int *f,int n,int flg) {
            rep(i,0,n) if (rev[i]<i) swap(f[i],f[rev[i]]);
            for (int len=2,k=1;len<=n;len<<=1,k<<=1) {
                int wn=powmod(flg==1?gn:ign,(mod-1)/len);
                for (int i=0;i<n;i+=len)
                    for (int j=i,w=1;j<i+k;j++,w=1ll*w*wn%mod) {
                        int tmp=1ll*f[j+k]*w%mod;
                        f[j+k]=sub(f[j],tmp),f[j]=add(f[j],tmp);
                    }
            }
            if (flg==-1) {
                int inv=powmod(n);
                rep(i,0,n) f[i]=1ll*f[i]*inv%mod;
            }
        }
    
        void Mul(const int *a,const int *b,int lim,int *c) {
            static int f[N],g[N]; init(lim);
            rep(i,0,lim) f[i]=a[i],g[i]=b[i];
            NTT(f,lim,1),NTT(g,lim,1);
            rep(i,0,lim) c[i]=1ll*f[i]*g[i]%mod;
            NTT(c,lim,-1);
        }
    
        void Inv(const int *f,int n,int *g) {
            if (n==1) {g[0]=powmod(f[0]);return;}
            Inv(f,(n+1)>>1,g);
            static int f1[N]; int lim=glim((n-1)<<1); init(lim);
            rep(i,0,lim) f1[i]=i<n?f[i]:0,g[i]=i<n?g[i]:0;
            NTT(f1,lim,1),NTT(g,lim,1);
            rep(i,0,lim) g[i]=1ll*g[i]*sub(2,1ll*f1[i]*g[i]%mod)%mod;
            NTT(g,lim,-1);
            rep(i,n,lim) g[i]=0;
        }
    
        void Derv(const int *f,int n,int *g) {
            rep(i,1,n) g[i-1]=1ll*f[i]*i%mod;
            g[n-1]=0;
        }
        void Inte(const int *f,int n,int *g) {
            rep(i,0,n) g[i+1]=1ll*f[i]*powmod(i+1)%mod;
            g[0]=g[n]=0;
        }
    
        void Ln(const int *f,int n,int *g) {
            static int derf[N],invf[N],derg[N];
            Derv(f,n,derf),Inv(f,n,invf);
            int lim=glim((n-1)<<1);
            rep(i,n,lim) derf[i]=invf[i]=0;
            Mul(derf,invf,lim,derg);
            Inte(derg,n,g);
            rep(i,n,lim) g[i]=0;
        }
    
        void Exp(const int *f,int n,int *g) {
            if (n==1) {g[0]=1;return;}
            Exp(f,(n+1)>>1,g);
            static int f1[N],lng[N];
            Ln(g,n,lng);
            int lim=glim((n-1)<<1); init(lim);
            rep(i,0,lim) f1[i]=i<n?f[i]:0,g[i]=i<n?g[i]:0;
            NTT(g,lim,1),NTT(f1,lim,1),NTT(lng,lim,1);
            rep(i,0,lim) g[i]=1ll*g[i]*sub(add(1,f1[i]),lng[i])%mod;
            NTT(g,lim,-1);
            rep(i,n,lim) g[i]=0;
        }
    
        void Pow(const int *f,int n,int k,int *g) {
            static int lnf[N]; Ln(f,n,lnf);
            rep(i,0,n) lnf[i]=1ll*lnf[i]*k%mod;
            Exp(lnf,n,g);
        }
    }
    
    int a[N],n,k,t,b[N],c[N],ans[N];
    
    inline int read() {
        int x=0; char ch; while (!isdigit(ch=getchar()));
        while (isdigit(ch)) {x=add(10ll*x%mod,ch-48);ch=getchar();}
        return x;
    }
    
    int main() {
    #ifdef LOCAL
        freopen("a.in","r",stdin);
    #endif
        scanf("%d",&n); k=read(); scanf("%d",&t);
        rep(i,0,n) scanf("%d",&a[i]);
        if (t==0) c[0]=1,c[1]=mod-1,Poly::Inv(c,n,b);
        else b[0]=1,b[1]=mod-1;
        memset(c,0,sizeof(c));
        Poly::Pow(b,n,k,c);
        Poly::Mul(a,c,Poly::glim(2*(n-1)),ans);
        rep(i,0,n) printf("%d%c",ans[i]," 
    "[i==n-1]);
        return 0;
    }
    
  • 相关阅读:
    RequireJS进阶(二)
    JavaScript判断元素为数字的奇异写法
    RequireJS进阶(三)
    RequireJS进阶(一)
    读Ext之十四(Ext元素)
    JavaScript中__proto__与prototype的关系
    工作流术语
    一个例子(Hello World)
    无题
    再谈调用子流程(1)
  • 原文地址:https://www.cnblogs.com/wxq1229/p/12632905.html
Copyright © 2011-2022 走看看