zoukankan      html  css  js  c++  java
  • [题解] LuoguP5050 【模板】多项式多点求值

    https://www.luogu.com.cn/problem/P5050

    Description:

    字面意思

    给一个(n)次多项式(f(x)),让你求(f(x_1),f(x_2),...f(x_m))的值。

    (998244353)取模。

    (1le n,m le 64000)

    Solution:

    考虑分治,咋分治呢?

    构造两个多项式

    [L(x)=prodlimits_{i=1}^{m/2} (x-x_i) ]

    [R(x)=prodlimits_{i=m/2+1}^{m} (x-x_i) ]

    那么对于(i in [1,m/2]),有(L(x_i)=0),考虑将(f)(L)取模,即

    [f(x_i)=Q(x_i)L(x_i)+R(x_i)=R(x_i) ]

    即对于左半边的(x_i),有(f(x_i)=(f mod L)(x_i)),右半边同理。

    于是这样递归往下取模就行了。

    那个(L,R)珂以分治NTT。于是分治NTT的时候顺便建一棵线段树,然后从根开始往下走并不断取模,到叶子节点的时候(f)已经膜的只剩一个常数,就得到了一个答案。

    同时注意要先对根节点上的多项式取膜。

    复杂度(O(n log^2 n)),但窝写出来常数贼大......

    Code:

    这个菜鸡的超大常数代码......最后加了快读才卡过去......

    #include <bits/stdc++.h>
    using namespace std;
    #define rep(i,a,n) for (int i=a;i<n;i++)
    #define per(i,a,n) for (int i=n-1;i>=a;i--)
    #define pb push_back
    #define mp make_pair
    #define all(x) (x).begin(),(x).end()
    #define fi first
    #define se second
    #define SZ(x) ((int)(x).size())
    typedef long long ll;
    typedef double db;
    typedef pair<int,int> PII;
    typedef vector<int> VI;
    
    const int N=3e5+10,mod=998244353;
    inline int add(int x,int y,int m=mod) {return (x+=y)>=m?x-m:x;}
    inline int sub(int x,int y,int m=mod) {return (x-=y)<0?x+m:x;}
    inline int powmod(int x,int y=mod-2,int m=mod) {
    	int ans=1; for (;y;y>>=1,x=1ll*x*x%m)
    		if (y&1) ans=1ll*ans*x%m;
    	return ans;
    }
    const int gn=3,ign=powmod(gn);
    
    namespace Polynomial {
    	int rev[N];
    	void init(int n) { rep(i,0,n) rev[i]=rev[i>>1]>>1|((i&1)?n>>1:0); }
    	int glim(int n) { int lim=1; while (lim<=n) lim<<=1; return lim; }
    
    	void NTT(int *f,int n,int flg) {
    		rep(i,0,n) if (rev[i]<i) swap(f[i],f[rev[i]]);
    		for (int len=2,k=1;len<=n;len<<=1,k<<=1) {
    			int wn=powmod(flg==1?gn:ign,(mod+1)/len);
    			for (int i=0;i<n;i+=len)
    				for (int j=i,w=1;j<i+k;j++,w=1ll*w*wn%mod) {
    					int tmp=1ll*f[j+k]*w%mod;
    					f[j+k]=sub(f[j],tmp),f[j]=add(f[j],tmp);
    				}
    		}
    		if (flg==-1) {
    			int inv=powmod(n);
    			rep(i,0,n) f[i]=1ll*f[i]*inv%mod;
    		}
    	}
    
    	void Inv(int *f,int n,int *g) {
    		if (n==1) { g[0]=powmod(f[0]); return; }
    		Inv(f,(n+1)>>1,g);
    		static int tf[N]; 
    		int lim=glim((n-1)<<1); init(lim);
    		rep(i,0,lim) tf[i]=i<n?f[i]:0,g[i]=i<n?g[i]:0;
    		NTT(tf,lim,1),NTT(g,lim,1);
    		rep(i,0,lim) g[i]=1ll*g[i]*sub(2,1ll*tf[i]*g[i]%mod)%mod;
    		NTT(g,lim,-1);
    		rep(i,n,lim) g[i]=0;
    	}
    
    	struct poly {
    		VI a;
    		int size()const {return a.size();}
    		int deg()const {return size()-1;}
    		int &operator[](int i) { assert(i<size()); return a[i]; }
    		int operator[](int i)const {return i<size()?a[i]:0;}
    		void reverse() {::reverse(all(a));}
    		void resize(int n) {a.resize(n);}
    		poly(int n=0) {a=VI(n,0);}
    
    		void print() {
    			printf("#debug: "); puts("");
    			for (auto v:a) printf("%d ",v);
    			puts("
    -----------------");
    		}
    
    		poly inv(int n)const {
    			static int f[N],invf[N];
    			rep(i,0,n) f[i]=a[i];
    			Inv(f,n,invf);
    			poly ans(n);
    			rep(i,0,n) ans[i]=invf[i];
    			return ans;
    		}
    	};
    
    	poly operator+(const poly &a,const poly &b) {
    		poly c(max(a.size(),b.size()));
    		rep(i,0,c.size()) c[i]=add(a[i],b[i]);
    		return c;
    	}
    	poly operator-(const poly &a,const poly &b) {
    		poly c(max(a.size(),b.size()));
    		rep(i,0,c.size()) c[i]=sub(a[i],b[i]);
    		return c;
    	}
    
    	poly operator*(const poly &a,const poly &b) {
    		int n=a.deg(),m=b.deg(),lim=glim(n+m);
    		poly c(n+m+1);
    		static int ta[N],tb[N];
    		rep(i,0,lim) ta[i]=tb[i]=0;
    		rep(i,0,n+1) ta[i]=a[i];
    		rep(i,0,m+1) tb[i]=b[i];
    		init(lim); NTT(ta,lim,1),NTT(tb,lim,1);
    		rep(i,0,lim) ta[i]=1ll*ta[i]*tb[i]%mod;
    		NTT(ta,lim,-1);
    		rep(i,0,n+m+1) c[i]=ta[i];
    		return c;
    	}
    
    	pair<poly,poly> divmod(const poly &a,const poly &b) {
    		if (a.deg()<b.deg()) return mp(poly(0),a);
    		int n=a.deg(),m=b.deg();
    		poly ra=a,rb=b; ra.reverse(),rb.reverse();
    		poly q=ra*rb.inv(n-m+1),r;
    		q.resize(n-m+1),q.reverse();
    		r=a-q*b,r.resize(m);
    		return mp(q,r);
    	}
    
    	poly operator/(const poly &a,const poly &b) {return divmod(a,b).fi;}
    	poly operator%(const poly &a,const poly &b) {return divmod(a,b).se;}
    }
    using Polynomial::poly;
    
    poly p[N],a[N];
    
    void build(int x,int l,int r) {
    	if (l==r) {p[x]=a[l];return;}
    	int mid=(l+r)>>1;
    	build(x<<1,l,mid),build(x<<1|1,mid+1,r);
    	p[x]=p[x<<1]*p[x<<1|1];
    	// printf("%d: [%d,%d]",x,l,r); p[x].print();
    }
    
    int ans[N],n,m;
    poly A;
    
    void solve(int x,int l,int r,const poly &f) {
    	if (l==r) {ans[l]=f[0];return;}
    	int mid=(l+r)>>1,lc=x<<1,rc=x<<1|1;
    	solve(lc,l,mid,f%p[lc]);
    	solve(rc,mid+1,r,f%p[rc]);
    }
    
    namespace FakeIO {
    	const int SZ=233333;
    	char buf[SZ],*p1=buf,*p2=buf;
    	inline char nc() {return p1==p2&&(p2=(p1=buf)+fread(buf,1,SZ,stdin),p1==p2)?EOF:*p1++;}
    	inline int gi() {
    		int x=0,f=1; char ch; 
    		while (!isdigit(ch=nc())) if (ch=='-') f=-f;
    		while (isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=nc();}
    		return x*f;
    	}
    }
    using FakeIO::gi;
    
    int main() {
    #ifdef LOCAL
    	freopen("A.in","r",stdin);
    #endif
    	n=gi(),m=gi();
    	A=poly(n+1);
    	rep(i,0,n+1) {int x=gi();A[i]=x;}
    	rep(i,1,m+1) {
    		int x=gi(); a[i]=poly(2);
    		a[i][0]=mod-x,a[i][1]=1;
    	}
    	build(1,1,m);
    	solve(1,1,m,A%p[1]);
    	rep(i,1,m+1) printf("%d
    ",ans[i]);
    	return 0;
    }
    
  • 相关阅读:
    初识Tensorboard
    sql优化的几种方法
    nginx+ffmpeg+jwplayer
    jwplayer播放器
    详解spring 每个jar的作用
    RabbitMQ安装
    Migration 使用方法
    VisualSVN server 启用日志编辑
    nodejs prefix(全局)和cache(缓存)windows下设置
    python3 eval字符串str 转字典dict
  • 原文地址:https://www.cnblogs.com/wxq1229/p/12679582.html
Copyright © 2011-2022 走看看