使用二分法处理有序的数时非常有效的方法,能大大提高算法的效率。
描述
Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm’s runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1].
For example, Given [5, 7, 7, 8, 8, 10] and target value 8, return [3, 4].
1 #include <iostream> 2 3 int binarySeachch(int A[],int length,int target) 4 { 5 int head =0; 6 int tail = length-1; 7 8 while(head <= tail) 9 { 10 int cur = (head+tail)/2; 11 12 if(target > A[cur]) 13 { 14 head = cur+1; 15 } 16 else if(target < A[cur]) 17 { 18 tail = cur-1; 19 } 20 else 21 return cur; 22 } 23 return -1; 24 } 25 26 int lowerBound(int A[],int length,int target) 27 { 28 int head = 0; 29 int tail = length-1; 30 int cur = (head+tail)/2; 31 while(head < tail) 32 { 33 if(A[cur] >= target) 34 { 35 tail=cur; 36 } 37 else 38 { 39 head = cur + 1; 40 } 41 cur = (head+tail)/2; //notice 42 } 43 if(A[cur]>=target) 44 return cur; 45 else 46 return -1; 47 } 48 49 int upperBound(int A[],int length,int target) 50 { 51 int head = 0; 52 int tail= length-1; 53 int cur = (head+tail)/2; 54 55 while(head < tail) 56 { 57 if(A[cur] <= target) 58 { 59 head = cur+1; 60 } 61 else if(A[cur] > target) 62 { 63 tail = cur; 64 } 65 cur = (head+tail)/2; 66 } 67 if(A[cur] > target) 68 return cur; 69 else 70 return -1; 71 } 72 73 74 int main() 75 { 76 int A[] = {5,7,7,8,8,9}; 77 78 std::cout << lowerBound(A, 6, 8)<< std::endl; 79 std::cout << upperBound(A, 6, 8) << std::endl; 80 81 return 0; 82 }
实例2:
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted in ascending from left to right.
- Integers in each column are sorted in ascending from top to bottom.
For example,
Consider the following matrix:
[ [1, 4, 7, 11, 15], [2, 5, 8, 12, 19], [3, 6, 9, 16, 22], [10, 13, 14, 17, 24], [18, 21, 23, 26, 30] ]
Given target = 5
, return true
.
Given target = 20
, return false
.
1 class Solution { 2 public: 3 bool searchMatrix(vector<vector<int>>& matrix, int target) { 4 int row = matrix.size(); 5 int column = matrix.front().size(); 6 7 for(int i=0;i<row;i++) 8 { 9 if(matrix[i][column-1] < target) continue; 10 11 else if(matrix[i][column-1] > target) 12 { 13 if(binary_search(matrix[i].begin(), matrix[i].end(), target)) 14 return true; 15 } 16 else 17 return true; 18 } 19 return false; 20 } 21 };