zoukankan      html  css  js  c++  java
  • [poj3169][Layout]

    poj3169

    题目大意:

    有n头牛,他们按顺序排成了一排,有些牛关系比较好,他们的距离不能超过某个距离,还有些牛关系不好,他们之间的距离不能小于某个距离,可能会有多头牛挤在同一位置上,问1号牛和n号牛之间的最大距离是多少,如果不存在满足条件的排列则输出-1,如果距离无限大则输出-2.

    思路:

    用a[i]表示第i头牛的位置,那么对于k1与k2的距离不能小于c,就成了a[k2]-a[k1]>=c。对于k1和k2的距离不能大于c就成了,a[k2]-a[k1]<=c。因为是要求最大距离,所以要转化成小于号,即对于k1与k2的距离不能小于c,那么a[k1]-a[k2]<=-c。然后就是题目中的隐形约束,因为这n头牛按顺序排成了一排,所以第i头牛的位置一定在第i-1头牛后面,即a[i]-a[i-1]>=0即a[i-1]-a[i]<=0。然后按照差分约束的套路连边跑最短路即可。

    对于不存在的情况,就是中间出现了负环。对于答案无限大的情况,就是无法更新到最后一个点,也就是最后一个点不受约束。

    代码:

    #include<cstdio>
    #include<queue>
    #include<iostream>
    using namespace std;
    const int N=10000+1000,INF=1000000+1000;
    struct node
    {
    	int u,v,nxt,w;
    }e[N*100];
    int n,L,R;
    int head[N],ejs;
    void add(int u,int v,int w) {
    	e[++ejs].v=v;e[ejs].u=u;e[ejs].w=w;e[ejs].nxt=head[u];head[u]=ejs;
    }
    queue<int>q;
    int dis[N],vis[N],in[N];
    int spfa(int U) {
    	for(int i=1;i<=n;++i) dis[i]=INF;
    	while(!q.empty()) q.pop();
    	dis[U]=0;
    	q.push(U);
    	in[U]++;
    	while(!q.empty()) {
    		int u=q.front();
    		q.pop();
    		vis[u]=0;
    		for(int i=head[u];i;i=e[i].nxt) {
    			int v=e[i].v;
    			if(dis[v]>dis[u]+e[i].w) {
    				dis[v]=dis[u]+e[i].w;
    				if(!vis[v]) {
    					vis[v]=1;
    					q.push(v);
    					in[v]++;
    					if(in[v]>n) return -1;
    				}
    			}
    		}
    	}
    	if(dis[n]==INF) return -2;
    	return dis[n];
    }
    int main() {
    	scanf("%d%d%d",&n,&L,&R);
    	for(int i=1;i<=L;++i) {
    		int x,y,z;
    		scanf("%d%d%d",&x,&y,&z);
    		add(x,y,z);
    	}
    	for(int i=1;i<=R;++i) {
    		int x,y,z;
    		scanf("%d%d%d",&x,&y,&z);
    		add(y,x,-z);
    	}
    	for(int i=2;i<=n;++i)
    		add(i,i-1,0);
    	cout<<spfa(1)<<endl;
    	return 0;
    }
    
  • 相关阅读:
    js基础学习
    线程安全与锁
    JS浏览器检测工具方法、url参数读取
    【转载】JS时间工具类收藏(时间转换、倒计时)
    使用JQuery插件Jcrop进行图片截取
    记录小文件上传的几个例子(含进度条效果,附源码下载)
    T-SQL分页查询语句
    记录JavaScript中使用keyup事件做输入验证(附event.keyCode表)
    知识记录:ASP.NET 应用程序生命周期概述及Global.asax文件中的事件
    记录FormsAuthentication的使用方法
  • 原文地址:https://www.cnblogs.com/wxyww/p/9630669.html
Copyright © 2011-2022 走看看