zoukankan      html  css  js  c++  java
  • 牛客网多校赛第九场A-circulant matrix【数论】

    链接:https://www.nowcoder.com/acm/contest/147/A
    来源:牛客网
     

    时间限制:C/C++ 1秒,其他语言2秒
    空间限制:C/C++ 262144K,其他语言524288K
    64bit IO Format: %lld

    题目描述

    Niuniu has recently learned how to use Gaussian elimination to solve systems of linear equations.

    Given n and a[i], where n is a power of 2, let's consider an n x n matrix A.


    The index of A[i][j] and a[i] are numbered from 0.
    The element A[i][j] satisfies A[i][j] = a[i xor j],
    https://en.wikipedia.org/wiki/Bitwise_operation#XOR

    Let p = 1000000007.

    Consider the equation 
    A x = b (mod p)
    where A is an n x n matrix, and x and b are both n x 1 row vector.

    Given n, a[i], b[i], you need to solve the x.
    For example, when n = 4, the equations look like
    A[0][0]*x[0] + A[0][1]*x[1] + A[0][2]*x[2] + A[0][3]*x[3] = b[0] (mod p)
    A[1][0]*x[0] + A[1][1]*x[1] + A[1][2]*x[2] + A[1][3]*x[3] = b[1] (mod p)
    A[2][0]*x[0] + A[2][1]*x[1] + A[2][2]*x[2] + A[2][3]*x[3] = b[2] (mod p)
    A[3][0]*x[0] + A[3][1]*x[1] + A[3][2]*x[2] + A[3][3]*x[3] = b[3] (mod p)
    and the matrix A can be decided by the array a.

    It is guaranteed that there is a unique solution x for these equations.

    输入描述:

    The first line contains an integer, which is n.
    The second line contains n integers, which are the array a.
    The third line contains n integers, which are the array b.
    
    1 <= n <= 262144
    p = 1000000007
    0 <= a[i] < p
    0 <= b[i] < p

    输出描述:

    The output should contains n lines.
    The i-th(index from 0) line should contain x[i].
    x[i] is an integer, and should satisfy 0 <= x[i] < p.

    示例1

    输入

    复制

    4
    1 10 100 1000
    1234 2143 3412 4321
    

    输出

    复制

    4
    3
    2
    1

    看了一整天也没有真的搞明白FWT和FFT到底是干吗玩意儿 最后绝望的我决定退而求其次

    大概知道一下怎么用的就行了

    简而言之 FFT就是用来算多项式乘法(卷积),FWT就是用来算位运算卷积

    FFT算法,是用于优化卷积,而FWT是用于优化逻辑运算卷积。形如下图: 

    它同样可以写作 

    因为 i ^ j ^ j = i 把这道题的等式列出来 就会发现

    FWT(B) = FWT(A) * FWT(X)

    所以对b 和 a 求一次FWT

    然后对b / a做FWT的逆变换IFWT

    
    #include<iostream>
    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    #include<stack>
    #define inf 1e18
    using namespace std;
    int n;
    const long long p = 1e9 + 7;
    const int maxn = 263000;
    long long a[maxn], b[maxn];
    
    long long qpow(long long a, long long b)
    {
    	long long ans = 1;
    	while (b) {
    		if (b & 1) {
    			ans = ans * a % p;
    		}
    		a = a * a % p;
    		b = b >> 1;
    	}
    	return ans;
    }
    
    void fwt(long long a[])
    {
    	for (int d = 1; d < n; d <<= 1) {
    		for (int m = d << 1, i = 0; i < n; i += m) {
    			for (int j = 0; j < d; j++) {
    				long long x = a[i + j], y = a[i + j + d];
    				a[i + j] = (x + y) % p;
    				a[i + j + d] = (x - y + p) % p;
    			}
    		}
    	}
    }
    
    void ifwt(long long a[])
    {
    	long long inv = qpow(2, p - 2);//并不知道为什么是p - 2
    	for (int d = 1; d < n; d <<= 1) {
    		for (int m = d << 1, i = 0; i < n; i += m) {
    			for (int j = 0; j < d; j++) {
    				long long x = a[i + j], y = a[i + j + d];
    				a[i + j] = (x + y) % p;
    				a[i + j + d] = (x - y + p) % p;
    				a[i + j] = a[i + j] * inv % p;
    				a[i + j + d] = a[i + j + d] * inv % p;
    			}
    		}
    	}
    }
    
    int main()
    {
    	while (scanf("%d", &n) != EOF) {
    		for (int i = 0; i < n; i++) {
    			scanf("%d", &a[i]);
    		}
    		for (int i = 0; i < n; i++) {
    			scanf("%d", &b[i]);
    		}
    
    		fwt(a);
    		fwt(b);
    		for (int i = 0; i < n; i++) {
    			a[i] = (b[i] * qpow(a[i], p - 2)) % p;
    		}
    		ifwt(a);
    		for (int i = 0; i < n; i++) {
    			cout << a[i] << endl;
    		}
    	}
    }
    
  • 相关阅读:
    Nodejs 开发指南 Nodejs+Express+ejs 开发microblog开发心得
    转载 java学习注意点
    STM32f103的数电采集电路的ADC多通道采集程序
    时间复杂度与空间复杂度
    RS232串口通信详解
    实现扫码登录
    TCP/UDP区别与联系
    Tcp三次握手/四次挥手
    浅谈CSRF攻击方式
    图片淡入淡出
  • 原文地址:https://www.cnblogs.com/wyboooo/p/9643383.html
Copyright © 2011-2022 走看看