zoukankan      html  css  js  c++  java
  • poj3264 balanced lineup【线段树】

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2.. N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2.. NQ+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1.. Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    两棵树分别保存区间最大最小值即可

    
    #include<iostream>
    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    #define inf 1e18
    using namespace std;
    
    int q, n;
    const int maxn = 50005;
    int cow[maxn], talltree[maxn << 2], shorttree[maxn<<2];
    
    void tall_pushup(int rt)//更新
    {
        talltree[rt] = max(talltree[rt << 1], talltree[rt << 1 | 1]);
    }
    
    void short_pushup(int rt)
    {
        shorttree[rt] = min(shorttree[rt<<1], shorttree[rt<<1|1]);
    }
    
    void tall_build(int l, int r, int rt)
    {
        if(l == r){
            talltree[rt] = cow[l];
            return;
        }
        int m = (l + r) >> 1;
        tall_build(l, m, rt << 1);
        tall_build(m + 1, r, rt << 1 | 1);
        tall_pushup(rt);
    }
    
    void short_build(int l, int r, int rt)
    {
        if(l == r){
            shorttree[rt] = cow[l];
            return;
        }
        int m = (l + r) >> 1;
        short_build(l, m, rt << 1);
        short_build(m + 1, r, rt << 1 | 1);
        short_pushup(rt);
    }
    
    /*void pushdown(int rt, int ln, int rn)
    {
        if(lazy[rt]){
            lazy[rt << 1] += lazy[rt];
            lazy[rt << 1 | 1] += lazy[rt];
            tree[rt << 1] += lazy[rt] * ln;
            tree[rt << 1 | 1] += lazy[rt] * rn;
            lazy[rt] = 0;
        }
    }
    
    void update(int L, int C, int l, int r, int rt)
    {
        if(l == r){
            tree[rt] += C;
            return;
        }
        int m = (l + r) >>1;
        if(L <= m) update(L, C, l, m, rt << 1);
        else update(L, C, m + 1, r, rt << 1 | 1);
        pushup(rt);
    }
    
    void update(int L, int R, int C, int l, int r, int rt)
    {
        if(L <= l && r <= R){//本区间完全在操作区间内
            tree[rt] += C * (r - l + 1);
            lazy[rt] += C;
            return;
        }
        int m = (l + r) >> 1;
        pushdown(rt, m - l + 1, r - m);
        if(L <= m) update(L, R, C, l, m, rt << 1);
        if(R > m) update(L, R, C, m + 1, r, rt << 1 | 1);
        pushup(rt);
    }*/
    
    int tall_query(int L, int R, int l, int r, int rt)
    {
        if(L <= l && r <= R){
            return talltree[rt];
        }
        int m = (l + r) >> 1;
        //pushdown(rt, m - l + 1, r - m);
    
        int ans = 0;
        if(L <= m) ans = max(ans, tall_query(L, R, l, m, rt << 1));
        if(R > m) ans = max(ans, tall_query(L, R, m + 1, r, rt << 1 | 1));
        return ans;
    }
    
    int short_query(int L, int R, int l, int r, int rt)
    {
        if(L <= l && r <= R){
            return shorttree[rt];
        }
        int m = (l + r) >> 1;
        //pushdown(rt, m - l + 1, r - m);
    
        int ans = inf;
        if(L <= m) ans = min(ans, short_query(L, R, l, m, rt << 1));
        if(R > m) ans = min(ans, short_query(L, R, m + 1, r, rt << 1 | 1));
        return ans;
    }
    
    
    int main()
    {
        while(scanf("%d%d", &n, &q) != EOF){
            for(int i = 1; i <= n; i++){
                scanf("%d", &cow[i]);
            }
            tall_build(1, n, 1);
            short_build(1, n, 1);
    
            while(q--){
                int a, b;
                scanf("%d%d", &a, &b);
                cout<<tall_query(a, b, 1, n, 1) - short_query(a, b, 1, n, 1)<<endl;
            }
        }
        return 0;
    }
    
  • 相关阅读:
    pycharm2018.1下载激活(mac平台)
    python 保存登录状态 cookie
    utf-8和utf-8-sig的区别
    AcWing 803. 区间合并
    AcWing 801. 二进制中1的个数
    AcWing 800. 数组元素的目标和
    AcWing 799. 最长连续不重复子序列
    AcWing 795. 前缀和
    AcWing 791. 高精度加法 解题记录
    九州缥缈录 合集序言
  • 原文地址:https://www.cnblogs.com/wyboooo/p/9643396.html
Copyright © 2011-2022 走看看