zoukankan      html  css  js  c++  java
  • Python实现DBSCAN聚类算法(简单样例测试)

    发现高密度的核心样品并从中膨胀团簇。

    Python代码如下:

     1 # -*- coding: utf-8 -*-
     2 """
     3 Demo of DBSCAN clustering algorithm
     4 Finds core samples of high density and expands clusters from them.
     5 """
     6 print(__doc__)
     7 # 引入相关包
     8 import numpy as np
     9 from sklearn.cluster import DBSCAN
    10 from sklearn import metrics
    11 from sklearn.datasets.samples_generator import make_blobs
    12 from sklearn.preprocessing import StandardScaler
    13 import matplotlib.pyplot as plt
    14 # 初始化样本数据
    15 centers = [[1, 1], [-1, -1], [1, -1]]
    16 X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,
    17                             random_state=0)
    18 X = StandardScaler().fit_transform(X)
    19 # 计算DBSCAN
    20 db = DBSCAN(eps=0.3, min_samples=10).fit(X)
    21 core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
    22 core_samples_mask[db.core_sample_indices_] = True
    23 labels = db.labels_
    24 # 聚类的结果
    25 n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
    26 n_noise_ = list(labels).count(-1)
    27 print('Estimated number of clusters: %d' % n_clusters_)
    28 print('Estimated number of noise points: %d' % n_noise_)
    29 print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
    30 print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
    31 print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
    32 print("Adjusted Rand Index: %0.3f"
    33       % metrics.adjusted_rand_score(labels_true, labels))
    34 print("Adjusted Mutual Information: %0.3f"
    35       % metrics.adjusted_mutual_info_score(labels_true, labels,
    36                                            average_method='arithmetic'))
    37 print("Silhouette Coefficient: %0.3f"
    38       % metrics.silhouette_score(X, labels))
    39 # 绘出结果
    40 unique_labels = set(labels)
    41 colors = [plt.cm.Spectral(each)
    42           for each in np.linspace(0, 1, len(unique_labels))]
    43 for k, col in zip(unique_labels, colors):
    44     if k == -1:
    45         col = [0, 0, 0, 1]
    46     class_member_mask = (labels == k)
    47     xy = X[class_member_mask & core_samples_mask]
    48     plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
    49              markeredgecolor='k', markersize=14)
    50     xy = X[class_member_mask & ~core_samples_mask]
    51     plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
    52              markeredgecolor='k', markersize=6)
    53 plt.title('Estimated number of clusters: %d' % n_clusters_)
    54 plt.show()

    测试结果如下:

    最终结果绘图:

    具体数据:

  • 相关阅读:
    websocket 学习笔记
    oxy 学习笔记
    postcss
    一致性hash和chord
    leveldb 学习笔记
    logrus 学习笔记
    viper 学习笔记
    redigo 学习笔记
    gin 学习笔记
    修改TOMCAT的JVM虚拟机内存大小几种方式
  • 原文地址:https://www.cnblogs.com/wydxry/p/11029691.html
Copyright © 2011-2022 走看看