zoukankan      html  css  js  c++  java
  • reading from files

    如果有图会很好理解,最近太忙,以后再加吧
    1. #首先有一个需要读取的文件名列表
      #然后将文件名列表通过函数string_input_producer放进文件名队列。
      #有时候因为数据量太大,需要把他们放进不同的tfrecord文件中
      filename_queue = tf.train.string_input_producer(["file0.csv","file1.csv"])
      #对不同格式的文件有不同的reader
      reader = tf.TextLineReader()
      #通过reader的read函数extract a record from a file whose name is in the queue,
      #如果该文件中所有记录都被抽取完,dequeue这个filename,参考readerbase
      #read()返回下一个record
      key, value = reader.read(filename_queue)
      # decoded record,decode方式和文件内部record格式相关,然后拼接成需要的格式
      record_defaults =[[1],[1],[1],[1],[1]]
      col1, col2, col3, col4, col5 = tf.decode_csv(
      value, record_defaults=record_defaults)
      features = tf.stack([col1, col2, col3, col4])
      with tf.Session()as sess:
      # Start populating the filename queue.
      coord = tf.train.Coordinator()
      threads = tf.train.start_queue_runners(coord=coord)
      for i in range(1200):
      # Retrieve a single instance:
      example, label = sess.run([features, col5])
      coord.request_stop()
      coord.join(threads)

      参考:https://www.tensorflow.org/programmers_guide/reading_data


    提到queue就不得不提两个帮助多线程异步的类:tf.train.Coordinator和tf.train.QueueRunner;
    • tf.train.Coordinator:控制多线程,使其同时结束。
    • tf.train.QueueRunner:包含一些enqueue op,为其create一些线程,每一个op都在一个线程上运行。

    coordinator

    Coordinator方法:should_stop,request_stop,join
      1.  1 # Thread body: loop until the coordinator indicates a stop was requested.
         2 # If some condition becomes true, ask the coordinator to stop.
         3 defMyLoop(coord):
         4 whilenot coord.should_stop():#should_stop返回true or false,表示线程是否该结束
         5 ...do something...
         6 if...some condition...:
         7 coord.request_stop()#当某些条件发生时,一个进程request_stop,其他进程因为should_stop返回true而终止
         8 # Main thread: create a coordinator.
         9 coord = tf.train.Coordinator()
        10 # Create 10 threads that run 'MyLoop()'
        11 threads =[threading.Thread(target=MyLoop, args=(coord,))for i in xrange(10)]
        12 # Start the threads and wait for all of them to stop.
        13 for t in threads:
        14 t.start()
        15 coord.join(threads)

    QueueRunner

    1.  1 example =...ops to create one example...
       2 # Create a queue, and an op that enqueues examples one at a time in the queue.
       3 #区别于filename queue,这是example queue。可以是接着上面读数据解析然后放进这个queue
       4 queue = tf.RandomShuffleQueue(...)
       5 enqueue_op = queue.enqueue(example)#定义入队操作
       6 # Create a training graph that starts by dequeuing a batch of examples.
       7 inputs = queue.dequeue_many(batch_size)
       8 train_op =...use 'inputs' to build the training part of the graph...
       9 # Create a queue runner that will run 4 threads in parallel to enqueue
      10 # examples.
      11 #QueueRunner的构造函数,queuerunner是为一个queue的入队操作多线程化服务的,
      12 #第二个参数是入队操作列表
      13 qr = tf.train.QueueRunner(queue,[enqueue_op]*4)
      14 # Launch the graph.
      15 sess = tf.Session()
      16 # Create a coordinator, launch the queue runner threads.
      17 coord = tf.train.Coordinator()
      18 #queuerunner为queue创造多线程,并且把这些线程的结束交由coordinator管理
      19 enqueue_threads = qr.create_threads(sess, coord=coord, start=True)
      20 # Run the training loop, controlling termination with the coordinator.
      21 for step in xrange(1000000):
      22 if coord.should_stop():
      23 break
      24 sess.run(train_op)
      25 # When done, ask the threads to stop.
      26 coord.request_stop()
      27 # And wait for them to actually do it.
      28 coord.join(enqueue_threads)
    未完待续。。。





  • 相关阅读:
    均值回归理论,均值回归法则是指万物最终都将回归于其长期的均值
    文本框仅允许输入大于0的正整数
    Angularjs接收服务端的布尔值
    Ajax POST单个对象或多个对象至API
    ASP.NET MVC程序重构
    查询数据库创建时间
    查询MS SQL的版本号
    获取Data和Log默认路径
    快速查找对象
    表关联使用INNER JOIN实现更新功能
  • 原文地址:https://www.cnblogs.com/wyh1993/p/bcbc052b45df440275a94341c02e4cdc.html
Copyright © 2011-2022 走看看