zoukankan      html  css  js  c++  java
  • python深度优先、广度优先和A star search


    1
    class Node: 2 """ 3 This class describes a single node contained within a graph. 4 It has the following instannce level attributes: 5 6 ID: An integer id for the node i.e. 1 7 heuristic_cost: A float value representing the estimated 8 cost to the goal node 9 """ 10 def __init__(self, ID, heuristic_cost): 11 self.ID = ID 12 self.connected_nodes = [] 13 self.heuristic_cost = heuristic_cost 14 15 def __repr__(self): 16 ID = self.ID 17 hx = self.heuristic_cost 18 if len(self.connected_nodes)==0: 19 nodes = 'None' 20 else: 21 nodes = ','.join(str(cn[1].ID) for cn in self.connected_nodes) 22 return 'Node:{} h(n):{} Connected Nodes:{}'.format(ID, hx, nodes) 23 24 def set_connected_nodes(self,connected_nodes): 25 """ 26 Adds edges that lead from this node to other nodes: 27 28 Parameters: 29 - connected_nodes: A list of tuples consisting of (cost, Node), 30 where 'cost' is a floating point value 31 indicating the cost to get from this node 32 to 'Node' and 'Node' is a Node object 33 """ 34 self.connected_nodes = connected_nodes 35 36 def build_graph(): 37 """ 38 Builds the graph to be parsed by the search algorithms. 39 Returns: The starting node, which is the entry point into the graph 40 """ 41 ids = range(13) 42 coords = [(0,0), (1,1), (1,0), (1,1), (5,2), (3,1), (3,0), 43 (3,-1), (5,1), (4,1), (4,0), (4,-2), (7,0)] 44 45 #https://en.wikipedia.org/wiki/Euclidean_distance 46 euclidean_distance = lambda x1y1, x2y2: ((x1y1[0]-x2y2[0])**2 + (x1y1[1]-x2y2[1])**2)**(0.5) 47 48 def build_connected_node_list(from_id, to_ids): 49 starting_coords = coords[from_id] 50 51 connected_nodes = [] 52 for to_id in to_ids: 53 connected_nodes.append((euclidean_distance(starting_coords, coords[to_id]), all_nodes[to_id])) 54 55 return connected_nodes 56 57 goal_coords = (7,0) 58 all_nodes = [Node(_id, euclidean_distance(coord, goal_coords)) for _id, coord in zip(ids, coords)] 59 60 all_nodes[8].set_connected_nodes(build_connected_node_list(8, [12])) 61 all_nodes[10].set_connected_nodes(build_connected_node_list(10,[12])) 62 all_nodes[5].set_connected_nodes(build_connected_node_list(5, [8])) 63 all_nodes[6].set_connected_nodes(build_connected_node_list(6, [9, 10])) 64 all_nodes[7].set_connected_nodes(build_connected_node_list(7, [11])) 65 all_nodes[1].set_connected_nodes(build_connected_node_list(1, [4,5])) 66 all_nodes[2].set_connected_nodes(build_connected_node_list(2, [5,6])) 67 all_nodes[3].set_connected_nodes(build_connected_node_list(3, [7])) 68 all_nodes[0].set_connected_nodes(build_connected_node_list(0, [1,2,3])) 69 70 return all_nodes[0]
    1 # The starting node. You can use this cell to familiarize
    2 # yourself with the node/graph structure
    3 build_graph()

    代码:

      1 import numpy
      2 
      3 def depth_first_search(starting_node, goal_node):
      4     """
      5     This function implements the depth first search algorithm
      6     
      7     Parameters:
      8     - starting_node: The entry node into the graph
      9     - goal_node: The integer ID of the goal node.
     10     
     11     Returns:
     12     A list containing the visited nodes in order they were visited with starting node
     13     always being the first node and the goal node always being the last
     14     """
     15     visited_nodes_in_order = []
     16     
     17     # YOUR CODE HERE
     18     #raise NotImplementedError()
     19     stack = []
     20     visited = set() # initialize explored set to empty
     21     stack.append(starting_node)
     22     
     23     while True:
     24         # if the stack is empty, then return failure
     25         if len(stack) == 0:
     26             return 'failure'
     27         
     28         # choose a leaf node and remove it from the stack
     29         leafnode = stack.pop()
     30         
     31         if leafnode not in visited:
     32             visited_nodes_in_order.append(leafnode.ID)
     33         
     34         # if leaf node contain a good state, then return visited_nodes_in_order
     35         if leafnode.ID == goal_node:
     36             return visited_nodes_in_order
     37         
     38         # add the node to the explored set
     39         for cn in leafnode.connected_nodes:
     40             if cn[1] not in visited:
     41                 stack.append(leafnode)
     42                 stack.append(cn[1])
     43                 if cn[1] not in visited:
     44                     visited_nodes_in_order.append(cn[1].ID)
     45                     visited.add(cn[1])
     46                 break
     47 
     48 def iterative_deepening_depth_first_search(starting_node, goal_node):
     49     """
     50     This function implements the iterative deepening depth first search algorithm
     51     
     52     Parameters:
     53     - starting_node: The entry node into the graph
     54     - goal_node: The integer ID of the goal node.
     55     
     56     Returns:
     57     A list containing the visited node ids in order they were visited with starting node
     58     always being the first node and the goal node always being the last
     59     """
     60     visited_nodes_in_order = []
     61     
     62     # YOUR CODE HERE
     63     iterative_deepening_search(starting_node, goal_node, visited_nodes_in_order)
     64     
     65     return visited_nodes_in_order
     66 
     67 def iterative_deepening_search(starting_node, goal_node, visited_nodes_in_order):
     68     
     69     depth = 0
     70     while depth >= 0:
     71         result = depth_limited_search(starting_node, goal_node, depth, visited_nodes_in_order)
     72         
     73         if result != 'cutoff' and result != 'failure':
     74             return 
     75         
     76         depth = depth+1
     77     
     78 def depth_limited_search(starting_node, goal_node, limit, visited_nodes_in_order):
     79     return recursive_dls(starting_node, goal_node, limit, visited_nodes_in_order)
     80 
     81 def recursive_dls(node, goal_node, limit, visited_nodes_in_order):
     82     """
     83     :param node:
     84     :param goal_node:
     85     :param limit:
     86     :return: "failure":fail,"cutoff":cutoff,True:success
     87     """
     88     
     89     visited_nodes_in_order.append(node.ID)
     90     
     91     # goal test
     92     if node.ID == goal_node:
     93         return True
     94     elif limit == 0:
     95         return "cutoff"
     96     else:
     97         cutoff_occurred = False
     98         
     99         for cn in node.connected_nodes:
    100             child = cn[1]
    101             result = recursive_dls(child, goal_node, limit-1, visited_nodes_in_order)
    102             
    103             if result == "cutoff":
    104                 cutoff_occurred = True
    105             elif result != "failure":
    106                 return True
    107             
    108         if cutoff_occurred:
    109             return "cutoff"
    110         else:
    111             return "failure"
    112 
    113 def reconstruct_path(came_from, current):
    114     path = [current.ID]
    115     
    116     while current in came_from:
    117         current = came_from[current]
    118         path.append(current.ID)
    119     
    120     return path
    121 
    122 
    123 def a_star_search(starting_node, goal_node):
    124     """
    125     This function implements the A* search algorithm
    126     
    127     Parameters:
    128     - starting_node: The entry node into the graph
    129     - goal_node: The integer ID of the goal node.
    130     
    131     Returns:
    132     A list containing the visited node ids in order they were visited with starting node
    133     always being the first node and the goal node always being the last
    134     """
    135 
    136     visited_nodes_in_order = []
    137     
    138     # YOUR CODE HERE
    139     
    140     # The set of nodes already evaluated
    141     close_set = set()
    142     
    143     # The set of currently discovered nodes that are not evaluated yet.
    144     # Initially, only the start node is known.
    145     open_set = []
    146     
    147     # For each node, which node it can most efficiently be reached from.
    148     # If a node can be reached from many nodes, cameFrom will eventually contain the
    149     # most efficient previous step.
    150     came_from = {}
    151     
    152     # For each node, the cost of getting from the start node to that node
    153     gscore = {starting_node:0}
    154     
    155     # for each node, the total cost of getting from the start node to the goal
    156     # by passing by that node. That value is partly known, partly heuristic.
    157     fscore = {starting_node:starting_node.heuristic_cost}
    158     
    159     open_set.append((fscore[starting_node], starting_node))
    160     
    161     while open_set:
    162         
    163         # find the node in openSet having the lowest fScore[] value
    164         lowscore = open_set[-1][0]
    165         current = open_set[-1][1]
    166         for item in open_set:
    167             if item[0] < lowscore:
    168                 current = item[1]
    169                 lowscore = item[0]
    170         
    171         if current.ID == goal_node:
    172             path = reconstruct_path(came_from, current)
    173             for item in reversed(path):
    174                 visited_nodes_in_order.append(item)
    175                 
    176         open_set.remove((lowscore, current))
    177         
    178         close_set.add(current)
    179         
    180         for cn in current.connected_nodes:
    181             next = cn[1]
    182             cost = cn[0]
    183             
    184             # Ignore the neighbor which is already evaluated
    185             if next in close_set:
    186                 continue
    187             
    188             # the cost from start to a neighbor via current
    189             new_cost = gscore[current] + cost
    190             
    191             # Discover a new node
    192             if next not in [i[1] for i in open_set]:
    193                 open_set.append((fscore.get(next, numpy.inf), next))    
    194             elif new_cost >= gscore.get(next, numpy.inf):
    195                 continue
    196             
    197             # This path is the best until now. Record it
    198             came_from[next] = current
    199             gscore[next] = new_cost
    200             fscore[next] = gscore[next] + next.heuristic_cost
    201     
    202     return visited_nodes_in_order

    测试:

     1 goal_node = 12
     2 depth_first_search_answer = [0, 1, 4, 5, 8, 12]
     3 iterative_deepening_depth_first_search_answer = [0, 0, 1, 2, 3, 0, 1,
     4                                                  4, 5, 2, 5, 6, 3, 7,
     5                                                  0, 1, 4, 5, 8, 2, 5,
     6                                                  8, 6, 9, 10, 3, 7, 11,
     7                                                  0, 1, 4, 5, 8, 12]
     8 a_star_search_answer = [0, 2, 6, 10, 12]
     9 
    10 assert (depth_first_search(build_graph(), goal_node)==depth_first_search_answer)
    11 assert (iterative_deepening_depth_first_search(build_graph(), goal_node)==iterative_deepening_depth_first_search_answer)
    12 assert (a_star_search(build_graph(), goal_node)==a_star_search_answer)
  • 相关阅读:
    Linux使用locate命令定位文件
    LINUX常用命令
    linux性能问题(CPU,内存,磁盘I/O,网络)
    Linux下常用的shell命令记录
    Linux下的进程管理
    Linux常用性能检测命令解释
    CentOS查看系统信息-CentOS查看命令
    linux系统中如何查看日志 (常用命令)
    美团HD(4)-二级联动效果
    美团HD(3)-加载分类导航数据
  • 原文地址:https://www.cnblogs.com/wylwyl/p/10357501.html
Copyright © 2011-2022 走看看