#https://blog.csdn.net/huachao1001/article/details/78501928 import data01 import tensorflow as tf import numpy as np # 读入测试数据 # 导入数据 print("loading data... ") X_train, y_train = data01.get_mstar_data("train", 64, 64, 96) X_test, y_test = data01.get_mstar_data("test", 64, 64, 96) X_train = np.reshape(X_train, [X_train.shape[0], X_train.shape[1] * X_train.shape[2]]) X_test = np.reshape(X_test, [X_test.shape[0], X_test.shape[1] * X_test.shape[2]]) print(X_train.shape, y_train.shape) print(X_test.shape, y_test.shape) print("shuffling ... ") X_train, y_train = data01.data_shuffle(X_train, y_train) X_test, y_test = data01.data_shuffle(X_test, y_test) print("one_hot ...") y_train, y_test = data01.one_hot(y_train, y_test) print(y_train.shape) print(y_test.shape) # 将每一张图片用一个64x64的矩阵表示 X_train = X_train.reshape(-1, 64, 64, 1) X_test = X_test.reshape(-1, 64, 64, 1) print(X_train.shape) print(X_test.shape) # 主要的程序 with tf.Session() as sess: # 1.先加载图和参数变量 saver = tf.train.import_meta_graph('model/sar10.ckpt.meta') saver.restore(sess, tf.train.latest_checkpoint('model/')) # 2.访问placeholders变量,并且创建feed-dict来作为placeholders的新值 graph = tf.get_default_graph() X = graph.get_tensor_by_name("X:0") Y = graph.get_tensor_by_name("Y:0") feed_dict = {X:X_test,Y: y_test} # 接下来,访问你想要执行的op predict_op = graph.get_tensor_by_name("predict_op:0") corr_te = np.mean(np.argmax(y_test, axis=1) == sess.run(predict_op, feed_dict=feed_dict))