这周加深了决策树算法的学习,了解了其中的优缺点
决策树的优点:
一、 决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。
二、 对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。
三、 能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。
四、 决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。
五、 易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。
六、 在相对短的时间内能够对大型数据源做出可行且效果良好的结果。
七、 可以对有许多属性的数据集构造决策树。
八、 决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。
决策树的缺点:
一、 对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。
二、 决策树处理缺失数据时的困难。
三、 过度拟合问题的出现。
四、 忽略数据集中属性之间的相关性。