笔记:pytorch Conv2d 的宽高公式理解,pytorch 使用自己的数据集并且加载训练
一、pypi 镜像使用帮助
pypi 镜像每 5 分钟同步一次。
临时使用
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple some-package
注意,simple 不能少, 是 https 而不是 http
设为默认
修改 ~/.config/pip/pip.conf (Linux), %APPDATA%pippip.ini (Windows 10) 或 $HOME/Library/Application Support/pip/pip.conf (macOS) (没有就创建一个), 修改 index-url至tuna,例如
[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
pip 和 pip3 并存时,只需修改 ~/.pip/pip.conf。
二、pytorch Conv2d 的宽高公式理解
三、pytorch 使用自己的数据集并且加载训练
import os
import sys
import numpy as np
import cv2
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset
import time
import random
import csv
from PIL import Image
def createImgIndex(dataPath, ratio):
'''
读取目录下面的图片制作包含图片信息、图片label的train.txt和val.txt
dataPath: 图片目录路径
ratio: val占比
return:label列表
'''
fileList = os.listdir(dataPath)
random.shuffle(fileList)
classList = [] # label列表
# val 数据集制作
with open('data/val_section1015.csv', 'w') as f:
writer = csv.writer(f)
for i in range(int(len(fileList)*ratio)):
row = []
if '.jpg' in fileList[i]:
fileInfo = fileList[i].split('_')
sectionName = fileInfo[0] + '_' + fileInfo[1] # 切面名+标准与否
row.append(os.path.join(dataPath, fileList[i])) # 图片路径
if sectionName not in classList:
classList.append(sectionName)
row.append(classList.index(sectionName))
writer.writerow(row)
f.close()
# train 数据集制作
with open('data/train_section1015.csv', 'w') as f:
writer = csv.writer(f)
for i in range(int(len(fileList) * ratio)+1, len(fileList)):
row = []
if '.jpg' in fileList[i]:
fileInfo = fileList[i].split('_')
sectionName = fileInfo[0] + '_' + fileInfo[1] # 切面名+标准与否
row.append(os.path.join(dataPath, fileList[i])) # 图片路径
if sectionName not in classList:
classList.append(sectionName)
row.append(classList.index(sectionName))
writer.writerow(row)
f.close()
print(classList, len(classList))
return classList
def default_loader(path):
'''定义读取文件的格式'''
return Image.open(path).resize((128, 128),Image.ANTIALIAS).convert('RGB')
class MyDataset(Dataset):
'''Dataset类是读入数据集数据并且对读入的数据进行索引'''
def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):
super(MyDataset, self).__init__() #对继承自父类的属性进行初始化
fh = open(txt, 'r') #按照传入的路径和txt文本参数,以只读的方式打开这个文本
reader = csv.reader(fh)
imgs = []
for row in reader:
imgs.append((row[0], int(row[1]))) # (图片信息,lable)
self.imgs = imgs
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
'''用于按照索引读取每个元素的具体内容'''
# fn是图片path #fn和label分别获得imgs[index]也即是刚才每行中row[0]和row[1]的信息
fn, label = self.imgs[index]
img = self.loader(fn)
if self.transform is not None:
img = self.transform(img) #数据标签转换为Tensor
return img, label
def __len__(self):
'''返回数据集的长度'''
return len(self.imgs)
class Model(nn.Module):
def __init__(self, classNum=31):
super(Model, self).__init__()
# torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
# torch.nn.MaxPool2d(kernel_size, stride, padding)
# input 维度 [3, 128, 128]
self.cnn = nn.Sequential(
nn.Conv2d(3, 64, 3, 1, 1), # [64, 128, 128]
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2, 2, 0), # [64, 64, 64]
nn.Conv2d(64, 128, 3, 1, 1), # [128, 64, 64]
nn.BatchNorm2d(128),
nn.ReLU(),
nn.MaxPool2d(2, 2, 0), # [128, 32, 32]
nn.Conv2d(128, 256, 3, 1, 1), # [256, 32, 32]
nn.BatchNorm2d(256),
nn.ReLU(),
nn.MaxPool2d(2, 2, 0), # [256, 16, 16]
nn.Conv2d(256, 512, 3, 1, 1), # [512, 16, 16]
nn.BatchNorm2d(512),
nn.ReLU(),
nn.MaxPool2d(2, 2, 0), # [512, 8, 8]
nn.Conv2d(512, 512, 3, 1, 1), # [512, 8, 8]
nn.BatchNorm2d(512),
nn.ReLU(),
nn.MaxPool2d(2, 2, 0), # [512, 4, 4]
)
self.fc = nn.Sequential(
nn.Linear(512 * 4 * 4, 1024),
nn.ReLU(),
nn.Linear(1024, 512),
nn.ReLU(),
nn.Linear(512, classNum)
)
def forward(self, x):
out = self.cnn(x)
out = out.view(out.size()[0], -1)
return self.fc(out)
def train(train_set, train_loader, val_set, val_loader):
model = Model()
loss = nn.CrossEntropyLoss() # 因为是分类任务,所以loss function使用 CrossEntropyLoss
optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # optimizer 使用 Adam
num_epoch = 10
# 开始训练
for epoch in range(num_epoch):
epoch_start_time = time.time()
train_acc = 0.0
train_loss = 0.0
val_acc = 0.0
val_loss = 0.0
model.train() # train model会开放Dropout和BN
for i, data in enumerate(train_loader):
optimizer.zero_grad() # 用 optimizer 將 model 參數的 gradient 歸零
train_pred = model(data[0]) # 利用 model 的 forward 函数返回预测结果
batch_loss = loss(train_pred, data[1]) # 计算 loss
batch_loss.backward() # tensor(item, grad_fn=<NllLossBackward>)
optimizer.step() # 以 optimizer 用 gradient 更新参数
train_acc += np.sum(np.argmax(train_pred.data.numpy(), axis=1) == data[1].numpy())
train_loss += batch_loss.item()
model.eval()
with torch.no_grad(): # 不跟踪梯度
for i, data in enumerate(val_loader):
# data = [imgData, labelList]
val_pred = model(data[0])
batch_loss = loss(val_pred, data[1])
val_acc += np.sum(np.argmax(val_pred.data.numpy(), axis=1) == data[1].numpy())
val_loss += batch_loss.item()
# 打印结果
print('[%03d/%03d] %2.2f sec(s) Train Acc: %3.6f Loss: %3.6f | Val Acc: %3.6f loss: %3.6f' %
(epoch + 1, num_epoch, time.time() - epoch_start_time,
train_acc / train_set.__len__(), train_loss / train_set.__len__(), val_acc / val_set.__len__(),
val_loss / val_set.__len__()))
if __name__ == '__main__':
dirPath = '/data/Matt/QC_images/test0916' # 图片文件目录
createImgIndex(dirPath, 0.2) # 创建train.txt, val.txt
root = os.getcwd() + '/data/'
train_data = MyDataset(txt=root+'train_section1015.csv', transform=transforms.ToTensor())
val_data = MyDataset(txt=root+'val_section1015.csv', transform=transforms.ToTensor())
train_loader = DataLoader(dataset=train_data, batch_size=6, shuffle=True, num_workers = 4)
val_loader = DataLoader(dataset=val_data, batch_size=6, shuffle=False, num_workers = 4)
# 开始训练模型
train(train_data, train_loader, val_data, val_loader)
三、参考目录
[https://blog.csdn.net/liangjiu2009/article/details/106549926]:
[https://blog.csdn.net/sinat_42239797/article/details/90641659]: