zoukankan      html  css  js  c++  java
  • 《机器学习实战》第三章:决策树(1)基本概念

    有半个月没来了。

    最近一段时间...大多在忙项目组的事(其实就是改一改现有代码的bug,不过也挺费劲的,毕竟代码不是自己写的)。另外就是自己租了几台美帝的vps,搭了$-$的服务器微笑 ,效果还不错。自己搭的话就不用去买别人的服务了,不过租vps毕竟还是要成本的,光用来番茄的话,性价比仍然比不过各路山寨奸商。

    然而我用学校邮箱注册了Github,会送一个学生大礼包,里面有些vps服务商的合作项目, 各种优惠。像aws的两个美国节点就有一年的免费使用权;Digital Ocean还送50刀的credit,也能用挺久了。话说回来,还是得给服务器找点“正事儿”来跑,不然有点浪费了。

    ------------------------------------------------------------------------------------------------

    扯远了。回归正题,决策树。

    这个玩意其实我并不太陌生。《人工智能》《数据挖掘》等几门课里面都动手实践过。还做过决策树的“增强版”——随机森林。这本书是用python实现的决策树,代码比较简洁。

    ------------------------------------------------------------------------------------------------

    决策树(Decision Tree)

    (1)是个基本的【分类】算法。

    (2)基本思想:决策树是一种树结构,其中的每个内部节点代表对某一特征的一次测试,每条边代表一个测试结果,叶节点代表某个类类的分布。决策树的决策过程需要从决策树的根节点开始,待测数据与决策树中的特征节点进行比较,并按照比较结果选择选择下一比较分支,直到叶子节点作为最终的决策结果。

    (3)举个例子吧:

    比如,两个同班同学A和B,玩一个游戏。A头脑中想着班上的一个同学,让B来猜是谁。B可以不断地通过向A提问,来逐渐缩小猜测范围,比如“这个人是男生还是女生”,“这个人身高是160以下,是160-170,是170-180,还是180以上”,“这个人有没拿过国家奖学金”等等,直到剩下一个或很有限个几个候选人。

    嗯...这个过程其实类似于决策树的决策过程,也就是拿到一条待分类的数据,给他进行分类:从决策树的根节点开始,按照一定顺序验证这条数据的特征。在每个特征节点上,按照该数据特征值对应的分类,顺着决策树的边,进入下一层节点,直到到达叶节点,得到最终的决策结果(即标签)。例如...有一家贷款机构拿到了一个人的个人信息(可能是信息泄露了),然后想根据下面这棵决策树,判断这个人有没贷款意向,从而决定要不要给他打骚扰电话:


    决策树的构造过程,其实就是他的“机器学习过程”,也就是机器根据数据集创建规则的过程。什么规则?就是在树的每一个节点上,究竟该选择哪一个数据属性,来把这个节点中的数据集分开呢?比如上面那个猜同学的游戏,是先问“性别”,还是先问“身高”,才能达到缩小猜测范围的最佳效果呢?

    等下会介绍。

    (4)优点:复杂度不高

     缺点:可能会产生过度匹配的问题

     适用数据类型:离散型连续型。

    ------------------------------------------------------------------------------------------------

    信息增益(Information Gain)、熵(Entropy)

    回到刚才那个问题,在决策树的每个节点上,究竟是选择哪个特征来把这个节点里的数据集划分开呢?

    划分数据集的大原则是:将无序的数据变得更加有序。

    那么,怎样度量数据有序还是无序?一种方法就是使用信息论来度量。

    在划分数据集之前之后,信息发生的变化称为信息增益。我们希望计算出每个特征值划分数据集获得的信息增益。那么,信息增益最高的特征就是最好的选择。坠吼滴!

    对于一个数据集合而言,信息的度量方式称为香农熵,或简称为。熵越大,说明数据集越混乱、越无序。一个数据集合,再划分前、划分后,的变化,就是信息增益了。信息增益越大,说明数据集合划分之后,有序程度的增加量越大。

    那么怎样计算熵呢?定义为信息的期望值。如果待分类的事务可能划分在多个分类之中,假设 Xi是其中的一个类则符号 Xi 信息定义为:


    其中,p(Xi) 是选择该分类的概率。

    为了计算熵,我们需要计算所有类别的所有可能值所包含的信息期望值:


    其中,n是分类的数目。

    还是来举个栗子:


    这个例子取自于《数据挖掘:概念与技术》。前4列:age(年龄)、income(收入)、student(是否是学生)、credit_rating(信用评级)是特征值。最后一列:buys_computer(是否买电脑)是分类(也就是标签)。

    这里有14条数据,他们现在处于同一个节点之中,我们先用4个特征中的某一个,来划分它们。先算当前没划分时的熵:


    根据最后一列的标签,这对数据有两个分类:yes / no。这14条数据里,有9条的分类是yes,5条是no。那么按上面的公式计算,当前数据集合的熵就是0.940。

    接下来,我们看看按照4种特征划分这个数据集合后,熵变成了多少。

    首先是age(年龄)。如果按照age来分,那么会分出3个子数据集,因为age有3种不同的特征值:<=30,31-40,>40。

     <=30:一共5条数据,其中2条yes,3条no

    30-40:一共4条数据,其中4条yes,0条no

    >40:一共5条数据,其中3条yes,2条no

    那么,按照age来分的话,划分后的熵就是:


    注意,这里计算的是划分后3个子数据集的熵的总和,每个子数据集的熵之前还乘上了一个权重,也就是这个数据集的概率。

    然后,拿划分的熵划分的熵,就得到了信息增益:


    接下来算按照income、student、credit_rating来划分的情况,过程一样的:

     

    Infoincome(D) = 4/14 * [ -2/4*log(2/4) - 2/4*log(2/4)] + 6/14* [ -4/6*log(4/6) - 2/6*log(2/6)] + 4/14* [ -3/4*log(3/4) - 1/4*log(1/4)]

    Gain(income) =0.029


    Infostudent(D) = 7/14 * [ -3/7*log(3/7) - 4/7*log(4/7)] + 7/14* [ -1/7*log(1/7) - 6/7*log(6/7)]

    Gain(student) =0.151


    Infocredit_rating(D) =  6/14 * [ -3/6*log(3/6) - 3/6*log(3/6)] + 8/14 * [ -6/8*log(6/8)- 2/8*log(2/8)]

    Gain(credit_rating) = 0.048


    比较之后,发现按照 age 划分,信息增量是最大的。所以在这个节点,我们决定按照 age 来进行划分。

    哦对了,以上的算法是ID3算法。它倾向于选择具有大量值的属性,即值比较分散的属性。除此之外还有C4.5算法。它引入了增益率(gain ratio)的概念,具体就不介绍了。

    嗯,决策树最核心的部分应该就是这些了。下一篇博客上代码。

     

    转自:http://blog.csdn.net/charlielincy/article/details/69301490

  • 相关阅读:
    Asp.net HttpContext 简介
    cxf 调用 .net webservice
    Dapper.Rainbow 简单使用
    Aspose.words 书签定位
    修改WCF的默认序列化格式
    mysql8.0.18忘记密码后重置密码
    聊一聊c#中的MATH.ROUND方法
    Windows上安装MySql
    win7搭建本地SonarQube环境进行c#代码分析
    使用dapper遇到的问题及解决方法
  • 原文地址:https://www.cnblogs.com/wyuzl/p/7699872.html
Copyright © 2011-2022 走看看