zoukankan      html  css  js  c++  java
  • 第五节,python基本语法

    1、类(Class)

    Python中的类的概念与其它语言类似,比较特殊的是protected和private在python中没有明确的限制,通常的惯例是用单下划线_表示protected,用双下划线开头__的表示private。

    class A:
        '''Class A'''
        def __init__(self,x,y,name):
            self.x=x
            self.y=y
            self.name=name
        def introduce(self):
            print(self.name)
        def greeting(self):
            print("what's up!")
        def __12norm(self):
            return self.x**2+self.y**2
        def cla_12norm(self):
            return self.__12norm()
    a=A(11,11,'Lenaa')
    print(A.__doc__)                  #打印类解释信息“Class A"
    a.introduce()
    a.greeting()
    print(a.name)
    print(a.cla_12norm())
    print(a._A__12norm())      #仍然可以访问,只是名字不一样
    print(a.__12norm())          #报错,是私有成员

    类的初始化使用的是__init__(self,),所有成员变量都是self的,所以以self.开头。

    双下划线开头的变量触发了Python中一种叫做name mangling的机制,其实只是名字变了,仍然可以通过前面加上”_类名“的方式访问

    print(a._A__12norm())      #仍然可以访问,只是名字不一样。

    Python中的继承非常简单,最基本的继承方式就是定义类的时候把父类放入括号里即可。

    class B(A):
        """Class B inheritenced from A"""
        def greeting(self):
            print("how's going!")
    b=B(12,12,'Flauree')
    b.introduce()
    b.greeting()      # how's going!进行了方法覆盖
    print(b.name)     # 输出新的name___Flauree

    2、map、reduce和filter

    map 可以用于可遍历结构的每个元素执行同样的操作,批量操作:

    y =map(lambda  x:x**2,[1,2,3,4])   #[1,4,9,16]
    for i in y:
    print(i)
    map(lambda x,y:x+y,[1,2,3],[5,6,7]) #[6,8,10]

    reduce则是对可遍历结构的元素按顺序进行两个输入参数的操作,并且每次的结果保存作为下次操作的第一个输入参数,还没有遍历的元素作为第二个输入参数:

    reduce(lambda x,y:x+y,[1,2,3,4])     #((1+2)+3)+4=10

    filter根据条件课对遍历结构进行筛选:

    filter(lambda x:x%2,[1,2,3,4,5])   #筛选奇数,[1,3,5]

    对于filter和map,在python2中返回结果是列表,在Python3中返回的是生成器。

    zip()函数:可以把多个列表关联起来,可以按顺序同时输出两个列表对应位置的元素对。

    zip()函数不会自动帮助判断两个列表是否长度一样,所以最终结果会以短的列表为准,想要以长的列表为准,可以考虑itertools模块中的izip_longest()函数。

    for x in zip([1,2,3],[4,5,6]):
        print(sum(x))             # 5,7,9

     

    3、文件操作和pickle

    在python中,推荐用上下文管理器(with-as)来打开文件,IO资源的管理更加安全,不用记着给文件执行close()函数,假设有个文件name_age.txt,里面存储着名字和年龄,格式如下:

    Tom,8

    Jerry,7

    Tyke,3

    ....

    # 读取文件内容并全部显示
    with open('name_age.txt','r') as f:
        lines=f.readlines()
        for line in lines:
            name,age=line.rstrip().split(',')
            print('{} is {} years old.'.format(name,age))
    # Tom is 8 years old.
    # Jerry is 7 years old.
    # Tyke is 3 years old.

    open()函数的第一个参数是文件名,第二个参数是模式,文件的模式一般有4种:读取(r)、写入(w)、追加(a)、和读写(r+)。

    有时候进行文件操作时希望把对象进行序列化,可以考虑用pickle模块。

    import pickle
    lines=[
        "I'm like a dog chasing cars.",
        "I wouldn't know what to do if ..",
        "I'd just do things."
    ]
    with open('lines.pkl','wb') as f:   #序列化并保存成文件
        pickle.dump(lines,f)
    with open('lines.pkl','rb')as f:    #从文件读取反序列化
        lines_back=pickle.load(f)
    print(lines_back)                   #和lines一样

    注意:序列化的时候就要使用b模式了。Python2中有个效率更高的pickle脚cPickle,用法和pickle一样,在Python3中就只有一个pickle。

    4、异常操作

    在深度学习中,尤其是数据准备阶段,常常遇到IO操作,遇到异常的可能性很高,采用异常处理可以保证数据处理的过程中不被中断,并对有异常的情况进行记录。

    for filepath in filelist:   #filelist是文件路径的列表
        try:
            with open(filepath,'r') as f:
                #执行数据处理的相关工作
            print('{} is processed!'.format(filepath))
        except IOError:
            print('{} with IOError!'.format(filepath))
            # 异常的相应处理

    5、多进程(multiprocessing)

    深度学习中对数据高效处理常常会需要并行,这时多进程就派上了用场。假设在数据准备阶段,有很多文件需要运行一定的预处理,正好有多台核服务器,我们希望把这些文件分成32份,并行处理:

    from multiprocessing import Process
    def process_data(filelist):
        for filepath in filelist:
            print('Processing {}...'.format(filepath))
            #处理数据
    if __name__=='__main__':
        #如果是在windows下,需要加上freeze_support()函数
        freeze_support()
        # full_list包含了要处理的全部文件列表
        n_total=len(full_list)  #一个远大于32的数
        n_processes=32
        # 每段子列表的平均长度
        length=float(n_total)/float(n_processes)
        # 计算下标,尽可能均匀地划分输入文件列表
        indices=[int(round(i*length)) for i in range(n_processes+1)]
        # 生成每个进程要处理的子文件列表
        sublists=[full_list[indices[i]:indices[i+1]]for i in range(n_processes)]
        # 生成进程
        processes=[Process(target=process_data(),args=(x,))for x in sublists]
        # 并行处理
        for p in processes:
            p.start()
        for p in processes:
            p.join()
  • 相关阅读:
    redis连接客户端
    map中使用的细节问题(不同key循坏中被后面的值替换)
    使用异步开启新的线程Spring异步方法注解@Async
    npm init 出现一堆提问(npm init -y)
    小程序的时间日期选择器
    小程序--分类项目跳转页面(同样也适用轮播图跳转)
    小程序样式不管用,解决方法button:not([size='mini']) { width: 184px; margin-left: auto; margin-right: auto; }
    vue-elementui的时间日期选择器( value-format="yyyy-MM-dd HH:mm:ss"),以及时间解析{y}-{m}-{d} {h}:{i}:{s}
    vue.config.js配置详细说明(逐条解释)
    element在el-table-column中如何使用过滤器
  • 原文地址:https://www.cnblogs.com/wyx501/p/10601034.html
Copyright © 2011-2022 走看看