首先,我们需要知道第二类斯特林数组的组合意义(即容斥)
(S^m_n = frac{1}{m!} sum_{k = 0}^{m}(-1)^k*C^k_m*(m - k)^n)
然后,题目中让我们求
(f(n) = sum_{i = 0}^nsum_{j = i}^nS^j_i*2^j*j!)
我们直接将(S^j_i)展开成上述的组合意义,同时(j)从(0)开始枚举(因为当(m > n)时,(S^m_n = 0))
则有:
(f(n) = sum_{i = 0}^nsum_{j = 0}^nfrac{1}{j!}sum_{k = 0}^j(-1)^k*C^k_j *(j - k)^i * 2^j*j!)
我们发现(j!)可以约去,同时将(C^k_j)展开,(2^j)提到前边:
(=sum_{i = 0}^nsum_{j = 0}^n2^jsum_{k = 0}^j(-1)^k * frac{j!}{k! * (j - k)!}*(j - k) ^ i)
我们再讲(j!)提到前边,同时底数相同的化一下
(=sum_{i= 0}^nsum_{j = 0}^n2^j * j!sum_{k= 0}^j frac{(-1)^k}{k!}frac{(j - k)^i}{(j - k)!})
我们将第一个(sum)化到后面
(sum_{j = 0}^n2^j*j!sum_{k=0}^jfrac{(-1)^k}{k!}frac{sum_{i = 0}^n(j - k)^i}{(j- k)!})
根据等比数列求和公式
(sum_{i = 0}^n(j - k)^i = frac{1 - (j - k)^{n + 1}}{1 - (j - k)})
我们设
(f(i) = frac{(-1)^i}{i!},g(i) = frac{1 - i^{n + 1}}{(1 - i)*i!})
那么则有
上式(=sum_{j = 0}^n2^jj!sum_{k = 0}^j f(k)g(j - k))
发现,这是个卷积啊,直接上NTT就好了
#include<cstdio>
#include<iostream>
#include<cctype>
#include<cstring>
#include<algorithm>
#include<cmath>
#define LL long long
using namespace std;
const int N = 8e5 + 3;
const LL mod = 998244353;
LL n;
LL a[N],b[N];
LL fac[N];
LL p[N];
int r[N],l,limit = 1;
inline LL quick(LL a,LL b){
LL res = 1;
while(b){
if(b & 1) res = res * a % mod;
b >>= 1;
a = a * a % mod;
}
return res;
}
inline void nttle(LL *A,int type){
for(int i = 0;i < limit;++i)
if(i < r[i]) swap(A[i],A[r[i]]);
for(int mid = 1;mid < limit;mid <<= 1){
LL Wn = (type == 1) ? quick(3,(mod - 1) / (mid << 1)) :
quick(3,mod - 1 - (mod - 1) / (mid << 1));
for(int R = mid << 1,j = 0;j < limit;j += R){
LL w = 1;
for(int k = 0;k < mid;++k,w = w * Wn % mod){
LL x = A[j + k],y = w * A[j + mid + k] % mod;
A[j + k] = x + y;
A[j + mid + k] = x - y;
if(A[j + k] >= mod) A[j + k] -= mod;
if(A[j + mid + k] < 0) A[j + mid + k] += mod;
}
}
}
if(type == -1){
LL inv = quick(limit,mod - 2);
for(int i = 0;i < limit;++i) A[i] = A[i] * inv % mod;
}
}
int main(){
scanf("%lld",&n);
p[0] = fac[0] = 1;
for(LL i = 1;i <= n;++i){
p[i] = (p[i - 1] << 1) % mod;
fac[i] = fac[i - 1] * i % mod;
}
for(LL i = 0;i <= n;++i){
if(i & 1) a[i] = (-1 + mod) * quick(fac[i],mod - 2) % mod;
else a[i] = 1 * quick(fac[i],mod - 2) % mod;
b[i] = (quick(i,n + 1) - 1 + mod) % mod * quick((i - 1 + mod) % mod * fac[i] % mod,mod - 2) % mod;
}
b[0] = 1,b[1] = n + 1;
// for(int i = 0;i <= n;++i) printf("%lld ",a[i]);puts("");
// for(int i = 0;i <= n;++i) printf("%lld ",b[i]);puts("");
while(limit < 2 * (n + 1)) limit <<= 1,++l;
for(int i = 0;i < limit;++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
//printf("%d ",r[i]);puts("");
nttle(a,1);nttle(b,1);
for(int i = 0;i < limit;++i) a[i] = a[i] * b[i] % mod;
nttle(a,-1);
LL ans = 0;
// for(int i = 0;i <= n;++i) printf("%lld ",a[i]);
for(int i = 0;i <= n;++i)
ans = (ans + p[i] * fac[i] % mod * a[i] % mod) % mod;
printf("%lld
",ans);
return 0;
}