ZR1153
首先我们可以发现一个比较简单的容斥做法
直接暴力枚举(2^m)个限制强制不合法,算贡献
注意如果两个限制冲突那么答案为0
直接暴力差分就好了
这样就有了快乐的(30)分了
接下来考虑对容斥进行DP
把所有点区间按照右端点排序,如果出来两个颜色相同的区间一个包含了另外一个,那么大区间是没有用的,因为小区间满足条件大区间一定满足
我们设(f_{i})表示满足第(i)个限制的带容斥系数的方案数
那么转移我们就枚举上一个没有交的区间
[f_{i} =g_{;_i -1} + sum_{co_i = co_j,l_jge r_i}f_j
]
其中(g_x)表示(1-x)位置满足(1-x)的所有容斥之后的限制的前缀和
也就是说
[g_i = g_{i - 1} imes s + sum_{r_j = i}f_j
]
就是看看第(i)位置上的限制满足还是不满足综合考虑的前缀和
继续回到求(f_i)的式子
既然(i)的这个限制要容斥,那么强制他不被满足,前面就是对所有和他没有交的限制求一个总的容斥
后面算有交的部分的贡献,必须满足和当前限制的颜色相同,
我们排序之后,有交的集合是一个区间,我们二分找到对应位置维护前缀和即可
#include<cstdio>
#include<iostream>
#include<queue>
#include<algorithm>
#include<cstring>
#include<cctype>
#include<vector>
#include<ctime>
#include<cmath>
#include<set>
#include<map>
#define LL long long
#define pii pair<int,int>
#define mk make_pair
#define fi first
#define se second
using namespace std;
const int N = 4e5 + 3;
const LL mod = 998244353;
struct seg{
int li,ri;
int xi;
}a[N],b[N];
vector <pii> co[N];
vector <LL> h[N];
LL f[N],g[N];
int n,m,s,cnt;
inline int read(){
int v = 0,c = 1;char ch = getchar();
while(!isdigit(ch)){
if(ch == '-') c = -1;
ch = getchar();
}
while(isdigit(ch)){
v = v * 10 + ch - 48;
ch = getchar();
}
return v * c;
}
inline bool cmp(seg x,seg y){
return x.ri < y.ri || (x.ri == y.li && x.li > y.li);
}
inline LL find(int x,int rr){
// printf("%d %d
",x,rr);
int l = 0,r = h[x].size() - 1,ans = -1;
if(r < 0) return 0;
while(l <= r){
int mid = (l + r) >> 1;
if(co[x][mid].se < rr) l = mid + 1,ans = mid;
else r = mid - 1;
}
// printf("%d %d %d %lld
",l,r,ans,ans == -1 ? h[x].back() : h[x].back() - h[x][ans]);
return ans == -1 ? h[x].back() : h[x].back() - h[x][ans];
}
inline LL mo(LL x){
if(x >= mod) x-= mod;
return x;
}
int main(){
n = read(),m = read(),s = read();
for(int i = 1;i <= m;++i){
a[i].li = read();
a[i].ri = read();
a[i].xi = read();
}
sort(a + 1,a + m + 1,cmp);
for(int i = 1;i <= m;++i){
bool flag = 0;
if(!co[a[i].xi].size()) co[a[i].xi].push_back(mk(a[i].li,a[i].ri));
else{
pii x = co[a[i].xi].back();
if(x.fi >= a[i].li && x.se <= a[i].ri) flag = 1;
else co[a[i].xi].push_back(mk(a[i].li,a[i].ri));
}
if(!flag) b[++cnt] = a[i];
}
m = cnt;
memcpy(a,b,sizeof(a));
// puts("new::");
// for(int i = 1;i <= m;++i) cerr << a[i].li << " " << a[i].ri << " " << a[i].xi << endl;
// puts("next::");
int now = 1;
f[0] = g[0] = 1;
for(int i = 1;i <= m;++i){
// cerr << "dsdas::"<< a[i].li << " " << a[i].ri << " " << a[i].xi << endl;
for(;now < a[i].ri;now++) g[now] = (g[now] + g[now - 1] * s) % mod;
f[i] = (-g[a[i].li - 1] + mod);
f[i] -= find(a[i].xi,a[i].li);
if(f[i] < 0) f[i] += mod;
LL gg = h[a[i].xi].empty() ? 0 : h[a[i].xi].back();
h[a[i].xi].push_back(mo(gg + f[i]));
g[a[i].ri] = mo(g[a[i].ri] + f[i]);
}
for(;now <= n;++now) g[now] = (g[now] + g[now - 1] * s) % mod;
printf("%lld
",g[n]);
return 0;
}