zoukankan      html  css  js  c++  java
  • python人脸识别

    需要掌握知识python,opencv和机器学习一类的基础

    过一段时间代码上传github,本人菜j一个,虽然是我自己写的,也有好多不懂,或者我这就是错误方向

    链接:https://pan.baidu.com/s/15IK5RWrRAr_wNLFreuK7VQ 提取码:ykkn

    人脸识别的步骤:
    人脸检测
        haar人脸检测,
        lbp人脸检测
    特征处理
        图片大小尺寸统一
        彩色灰度转换
        图片编成一维矩阵
    特征提取处理
        归一化
        特征选择-删除低方差的特征
        分析进行特征降维
        训练集与测试集以一定比例数据分割
    预测与训练
        朴素贝叶斯算法的预测
        决策树进行预测
        K-近邻预测    
        得出准确率
    

    程序运行:自己安装调用的库

      

     camera.py 运行会调用笔记本摄像头,鼠标右击会保存摄像头检测的人脸,保存到0和1文件夹,但是保存文件的路径需要自己手改

    read_image 会调用保存两个文件夹采集的人脸数据图片,test_pre方法读取的图片路径使用自己人脸照片(属于上面采集两个人脸之一)

    load_face_test.py 是把俩个程序结合出来,再有人脸数据集和haarcascades和lbp(opencv自带人脸检测网上可下就是慢,lbp是对比用的,我这里最后没有使用)

    # camera.py 运行会调用笔记本摄像头,鼠标右击会保存摄像头检测的人脸,保存到0和1文件夹,但是保存文件的路径需要自己手改
    import cv2 as cv import time def zh_cv(string): return string.encode("gbk").decode(errors="ignore") def get_video(): capture =cv.VideoCapture(0)# VideoCapture(0) 开发默认摄像头,如果你有多个摄像头可以试试除0之外的其他参数 print("-----打开摄像头--------") while(capture.isOpened()) : ret, frame=capture.read() if ret ==False : break; # print(frame) cv.flip(frame,1)# 左右变换 # print("---------haar检测算法----------") face_detect_dome(frame) # face_lbp_dome(frame) # cv.imshow("voide",frame) # cv.imshow(zh_cv("摄像头"),frame) c=cv.waitKey(50) if c == 27: break; def face_detect_dome(image): num =0 gray=cv.cvtColor(image,cv.COLOR_BGR2GRAY) face_detect=cv.CascadeClassifier("./face_xml/haarcascades/haarcascade_frontalface_alt.xml") #识别出人脸数量 # facerect = face_detect.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=3, minSize=(12, 12)) faces=face_detect.detectMultiScale(gray,1.1,4) for x,y,w,h in faces: num +=1 global f while(f ==True): file_name="1"# 保存文件路径 img_head = "zheng"# wang20200203211958 image_save = image[y:y+h, x:x+w] # 将当前帧含人脸部分保存为图片,注意这里存的还是彩色图片,前面检测时灰度化是为了降低计算量;这里访问的是从y位开始到y+h-1位 # print(resize_image(image_save,64,64)) image_save_resize=cv.resize(image_save,(64,64)) gray=cv.cvtColor(image_save_resize,cv.COLOR_BGR2GRAY)# 灰度 print(gray.shape) # cv.imshow("-----",image_save) cv.imwrite('./train_img/%s/%s%s.jpg' %(file_name,img_head,face_time()), gray) show_save =cv.imread('./train_img/%s/%s%s.jpg' %(file_name,img_head,face_time())) cv.imshow(zh_cv("save_%s%s"%(img_head,face_time())),show_save) f=False print("保存图片","%s%s"%(img_head,face_time())) cv.rectangle(image,(x,y),(x+w,y+h),(0,0,255),2) # 原图 位置 ,h 颜色 # cv.namedWindow("face lbp",cv.WINDOW_NORMAL) # 显示当前捕捉到了多少人脸图片了 font = cv.FONT_HERSHEY_SIMPLEX cv.putText(image, 'num:%d' % (num), (x + 30, y + 30), font, 1, (0, 255, 0), 2) cv.putText(image, 'name:%d' % (num), (x + 30, y -5), font, 1, (255, 0, 0), 2) # cv.namedWindow("face_haar",cv.WINDOW_NORMAL) cv.setMouseCallback('face_haar',img_save) cv.imshow("face_haar",image) def face_lbp_dome(image): gray=cv.cvtColor(image,cv.COLOR_BGR2GRAY) face_detect=cv.CascadeClassifier("./face_xml/lbpcascades/lbpcascade_frontalface.xml") faces=face_detect.detectMultiScale(gray,1.1,4) print("---------lbp----------") for x,y,w,h in faces: cv.rectangle(image,(x,y),(x+w,y+h),(0,0,255),2) # 原图 位置 w,h 颜色 cv.namedWindow("face_lbp",cv.WINDOW_NORMAL) cv.setMouseCallback('face_lbp',img_save) cv.imshow("face_lbp",image) def img_save(event, x, y, flags, param): global f if event == cv.EVENT_RBUTTONDOWN: f = True print(f) print("---------截取人脸----------") # cv.waitKey(0) def face_time(): # print(time.strftime("%Y%m%d%H%M%S", time.localtime())) n_time =str(time.strftime("%Y%m%d%H%M%S", time.localtime())) return n_time if __name__ == '__main__': f = False get_video()
    #read_image 会调用保存两个文件夹采集的人脸数据图片,test_pre方法读取的图片路径使用自己人脸照片(属于上面采集两个人脸之一)
    import os
    from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn.decomposition import PCA import numpy as np from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.preprocessing import StandardScaler from sklearn.naive_bayes import MultinomialNB import cv2 images = [] labels = [] img_list =[] # path_name是当前工作目录,后面会由os.getcwd()获得 def read_path(path_name): for dir_item in os.listdir(path_name): # os.listdir() 方法用于返回指定的文件夹包含的文件或文件夹的名字的列表 # 从当前工作目录寻找训练集图片的文件夹 full_path = os.path.abspath(os.path.join(path_name, dir_item)) if os.path.isdir(full_path): # 如果是文件夹,继续递归调用,去读取文件夹里的内容 read_path(full_path) else: # 如果是文件了 if dir_item.endswith('.jpg'): image = cv2.imread(full_path) if image is None: # 遇到部分数据有点问题,报错'NoneType' object has no attribute 'shape' pass else: image_resize=cv2.resize(image,(64,64)) gray=cv2.cvtColor(image_resize,cv2.COLOR_BGR2GRAY)# 灰度 weight,height = gray.shape # 取reshape后的矩阵的第一维度数据,即所需要的数据列表 img_reshape = gray.reshape(1,weight*height)[0] # print(list(img_reshape)) # 转换列表添加images image_list=list(img_reshape) images.append(image_list) # global labels labels.append(path_name) # 标注数据,me文件夹下是我,指定为0,其他指定为1,这里的0和1不是logistic regression二分类输出下的0和1,而是softmax下的多分类的类别 label = np.array(["%s"%"zhaoban" if label.endswith("%d"%0) else "unknow" for label in labels]) # label = np.array([endwith(labels)]) return images,label def mm(img_mm): """ 归一化处理 :return: NOne """ mm = MinMaxScaler(feature_range=(0,1)) data = mm.fit_transform(img_mm) print(data) print("----------归一化处理-------------") return data def pca(img_pca): """ 主成分分析进行特征降维 :return: None """ pca = PCA(n_components=0.9) data = pca.fit_transform(img_pca) print("------------主成分分析进行特征降维---------------") # print(data) return data def stand(stand_data): """ 标准化缩放 :return: """ std = StandardScaler() data = std.fit_transform(stand_data) # print(data) return data def naviebayes(data,target): """ 朴素贝叶斯进行文本分类 :return: None,t """ # news = fetch_20newsgroups(subset='all') # 进行数据分割 x_train, x_test, y_train, y_test = train_test_split(data,target, test_size=0.25) mlt = MultinomialNB(alpha=1.0) mlt.fit(x_train, y_train) # print(x_test) # print(test_pre()) y_predict = mlt.predict(test_pre()) print("分类类别为:", y_predict) # # 得出准确率 print("准确率为:", mlt.score(x_test, y_test)) return None def test_pre(): image_test =[] image =cv2.imread("qq.jpg") image_resize=cv2.resize(image,(64,64)) gray=cv2.cvtColor(image_resize,cv2.COLOR_BGR2GRAY)# 灰度 weight,height = gray.shape # 取reshape后的矩阵的第一维度数据,即所需要的数据列表 img_reshape = gray.reshape(1,weight*height)[0] # print(list(img_reshape)) # 转换列表添加images image_list=list(img_reshape) image_test.append(image_list) return image_test if __name__ == "__main__": # print(read_path("./train_img/")) images ,labels= read_path("./train_img/") # image_mm =mm(images) # image_stand =stand(image_mm) # image_pca=pca(image_mm) print("---------------------------------------") naviebayes(images,labels) print("-----------------")
    #load_face_test.py 是把俩个程序结合出来,再有人脸数据集和haarcascades和lbp(opencv自带人脸检测网上可下就是慢,lbp是对比用的,我这里最后没有使用)
    import cv2 as cv
    import time
    import os
    from sklearn.preprocessing import MinMaxScaler, StandardScaler
    from sklearn.decomposition import PCA
    import numpy as np
    from sklearn.model_selection import train_test_split, GridSearchCV
    from sklearn.preprocessing import StandardScaler
    from sklearn.naive_bayes import MultinomialNB
    
    import cv2
    images = []
    labels = []
    img_list =[]
    # path_name是当前工作目录,后面会由os.getcwd()获得
    def read_path(path_name):
        for dir_item in os.listdir(path_name): # os.listdir() 方法用于返回指定的文件夹包含的文件或文件夹的名字的列表
            # 从当前工作目录寻找训练集图片的文件夹
            full_path = os.path.abspath(os.path.join(path_name, dir_item))
            if os.path.isdir(full_path): # 如果是文件夹,继续递归调用,去读取文件夹里的内容
                read_path(full_path)
            else: # 如果是文件了
                if dir_item.endswith('.jpg'):
                    image = cv2.imread(full_path)
                    if image is None: # 遇到部分数据有点问题,报错'NoneType' object has no attribute 'shape'
                        pass
                    else:
                        image_resize=cv2.resize(image,(64,64))
                        gray=cv2.cvtColor(image_resize,cv2.COLOR_BGR2GRAY)# 灰度
                        weight,height = gray.shape
                      # 取reshape后的矩阵的第一维度数据,即所需要的数据列表
                        img_reshape = gray.reshape(1,weight*height)[0]
                        # print(list(img_reshape))
                        #   转换列表添加images
                        image_list=list(img_reshape)
                        images.append(image_list)
                        # global labels
                        labels.append(path_name)
                        # 标注数据,me文件夹下是我,指定为0,其他指定为1,这里的0和1不是logistic regression二分类输出下的0和1,而是softmax下的多分类的类别
        # dict ={0:"",1:"long"}
        # for key in range(2):
        #     print(dict[key])
        label = np.array(["%s"%"zheng" if label.endswith("%d"%1)   else "zhaoban" for label in labels])
        # label = np.array(["%s"%dict[i] if label.endswith("%d"%(i for i in range(2))) for label in labels])
        return images,label
    
    def mm(img_mm):
        """
        归一化处理
        :return: NOne
        """
        mm = MinMaxScaler(feature_range=(0,1))
        data = mm.fit_transform(img_mm)
        print(data)
        print("----------归一化处理-------------")
        return data
    def pca(img_pca):
        """
        主成分分析进行特征降维
        :return: None
        """
        pca = PCA(n_components=0.9)
        data = pca.fit_transform(img_pca)
        print("------------主成分分析进行特征降维---------------")
        # print(data)
        return data
    def stand(stand_data):
        """
        标准化缩放
        :return:
        """
        std = StandardScaler()
        data = std.fit_transform(stand_data)
        # print(data)
        return data
    def naviebayes(data,target,test_img):
        """
        朴素贝叶斯进行文本分类
        :return: None,t
        """
        # news = fetch_20newsgroups(subset='all')
        # 进行数据分割
        x_train, x_test, y_train, y_test = train_test_split(data,target, test_size=0.25)
    
        mlt = MultinomialNB(alpha=1.0)
        mlt.fit(x_train, y_train)
        # print(x_test)
        # print(test_pre())
        y_predict = mlt.predict(test_img)
        print("分类类别为:", y_predict)
        # # 得出准确率
        print("准确率为:", mlt.score(x_test, y_test))
        return y_predict,mlt.score(x_test, y_test)
    def test_pre(gray):
        image_test =[]
        weight,height = gray.shape
      # 取reshape后的矩阵的第一维度数据,即所需要的数据列表
        img_reshape = gray.reshape(1,weight*height)[0]
        # print(list(img_reshape))
        #   转换列表添加images
        image_list=list(img_reshape)
        image_test.append(image_list)
        return image_test
    
    def zh_cv(string):
        return  string.encode("gbk").decode(errors="ignore")
    def get_video():
        capture =cv.VideoCapture(0)# VideoCapture(0) 开发默认摄像头,如果你有多个摄像头可以试试除0之外的其他参数
        print("-----打开摄像头--------")
        while(capture.isOpened()) :
            ret, frame=capture.read()
            if ret ==False :
    
                break;
            # print(frame)
            cv.flip(frame,1)# 左右变换
            # print("---------haar检测算法----------")
            face_detect_dome(frame)
    
            # face_lbp_dome(frame)
            # cv.imshow("voide",frame)
            # cv.imshow(zh_cv("摄像头"),frame)
            c=cv.waitKey(50)
            if c == 27:
                break;
    
    def face_detect_dome(image):
        num =0
        gray=cv.cvtColor(image,cv.COLOR_BGR2GRAY)
        face_detect=cv.CascadeClassifier("./face_xml/haarcascades/haarcascade_frontalface_alt.xml")
        #识别出人脸数量
        # facerect = face_detect.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=3, minSize=(12, 12))
        faces=face_detect.detectMultiScale(gray,1.1,4)
        for x,y,w,h in faces:
            num +=1
            image_save = image[y:y+h, x:x+w] # 将当前帧含人脸部分保存为图片,注意这里存的还是彩色图片,前面检测时灰度化是为了降低计算量;这里访问的是从y位开始到y+h-1位++
            # print(resize_image(image_save,64,64))
            image_save_resize=cv.resize(image_save,(64,64))
            gray=cv.cvtColor(image_save_resize,cv.COLOR_BGR2GRAY)# 灰度
            predict,score =naviebayes(images,labels,test_pre(gray))
            print(score)
            global f
            # while(f ==True):
            #     file_name="0"
            #     img_head = "wang"#  wang20200203211958
            #     print(gray.shape)
            #     cv.imwrite('./train_img/%s/%s%s.jpg' %(file_name,img_head,face_time()), gray)
            #     show_save =cv.imread('./train_img/%s/%s%s.jpg' %(file_name,img_head,face_time()))
            #     cv.imshow(zh_cv("save_%s%s"%(img_head,face_time())),show_save)
            #     f=False
            #     print("保存图片","%s%s"%(img_head,face_time()))
    
                # image_test =cv.imread('./train_img/%s/%s%s.jpg' %(file_name,img_head,face_time()))
    
                # cv.imshow("-----",image_save)
            cv.rectangle(image,(x,y),(x+w,y+h),(0,0,255),2)
            #          原图         位置  ,h         颜色
            # cv.namedWindow("face lbp",cv.WINDOW_NORMAL)
    
            # 显示当前捕捉到了多少人脸图片了
            font = cv.FONT_HERSHEY_SIMPLEX
            cv.putText(image, 'num:%d' % (num), (x + 30, y + 30), font, 1, (0, 255, 0), 2)
            cv.putText(image, 'name:%s precision:%3.2f %%' % (predict[0],score*100),(x -15, y -5), font, 0.8, (25, 0, 185), 2)
            #cv.namedWindow("face_haar",cv.WINDOW_NORMAL)
            cv.setMouseCallback('face_haar',img_save)
            cv.imshow("face_haar",image)
    
    def face_lbp_dome(image):
        gray=cv.cvtColor(image,cv.COLOR_BGR2GRAY)
        face_detect=cv.CascadeClassifier("./face_xml/lbpcascades/lbpcascade_frontalface.xml")
        faces=face_detect.detectMultiScale(gray,1.1,4)
        print("---------lbp----------")
        for x,y,w,h in faces:
            cv.rectangle(image,(x,y),(x+w,y+h),(0,0,255),2)
            #          原图         位置  w,h         颜色
            cv.namedWindow("face_lbp",cv.WINDOW_NORMAL)
            cv.setMouseCallback('face_lbp',img_save)
            cv.imshow("face_lbp",image)
    
    def img_save(event, x, y, flags, param):
        global f
        if event == cv.EVENT_RBUTTONDOWN:
            f = True
            print(f)
            print("---------截取人脸----------")
            # cv.waitKey(0)
    def face_time():
        # print(time.strftime("%Y%m%d%H%M%S", time.localtime()))
        n_time =str(time.strftime("%Y%m%d%H%M%S", time.localtime()))
        return n_time
    
    if __name__ == '__main__':
        f = False
        images ,labels= read_path("./train_img/")
        get_video()

     

  • 相关阅读:
    New Audio Codec (3) : Design of a Scalable Parametric Audio Coder(可分级正弦模型)
    英国旅游庄园酒店
    圣塔芭芭拉加州大学 信号压缩实验室
    mptkcodec工程(二):VS2008+Win7 编译 mptkcodec(下)
    SPIHT 编码原理,代码,应用,专利问题
    Audio Bandwidth Extension 技术主页
    【quote】free HRTF Databases available online
    New Audio Codec (4) : Daryl Ning 的 Warped LPC and Wavelet Audio Coding 方案
    mptkcodec工程(二):VS2008+Win7 编译 mptkcodec(上)
    mptkcodec工程(一):Cygwin+Win7 编译 mptkcodec
  • 原文地址:https://www.cnblogs.com/wzb-liumangtu/p/12284154.html
Copyright © 2011-2022 走看看