zoukankan      html  css  js  c++  java
  • keras中调用tensorboard:from keras.callbacks import TensorBoard

    from keras.models import Sequential
    from keras.layers import Dense
    from keras.wrappers.scikit_learn import KerasRegressor
    import numpy as np
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import mean_squared_error
    from keras.callbacks import TensorBoard
    
    def model(optimizer="adam"):
        #create model
        model = Sequential()
        model.add(Dense(input_dim=4,units=12,activation="relu"))
        model.add(Dense(units=8,activation="relu"))
        model.add(Dense(units=1,activation="sigmoid"))
        #compile model
        model.compile(loss="mse",optimizer=optimizer,metrics=["accuracy"],)
        return model
    #######################################################################################
    #create data
    np.random.seed(seed=10)
    X = np.random.randn(100,4)
    y = np.random.randn(100)
    
    #split data in train dataset and test dataset
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
    
    #using wrappers to create sklearn interface
    
    model = KerasRegressor(build_fn=model,epochs=10,batch_size=5)
    
    #training
    #引入Tensorboard画图
    model.fit(X_train,y_train,validation_split=0.3,
              callbacks=[TensorBoard(log_dir="H:/1/",histogram_freq=1)])
    #predicting
    y_pred = model.predict(X_test)
    #evalution
    print("mse:"+str(mean_squared_error(y_test,y_pred)))

    启动:tensorboard --logdir="H:/1/"

  • 相关阅读:
    从零开始搭建VUE项目
    推送类型
    spring整合消息队列rabbitmq
    Terracotta
    MYSQL INNODB 存储引擎
    Java 各种读取文件方法以及文件合并
    spring-security用户权限认证框架
    Spring Bean初始化过程
    使用PLSQL客户端登录ORACLE时报ORA-12502和ORA-12545错误的解决方案
    计算机语言基础概况
  • 原文地址:https://www.cnblogs.com/wzdLY/p/9752617.html
Copyright © 2011-2022 走看看