zoukankan      html  css  js  c++  java
  • 学习笔记(第四周)

    任务

    结合本周学习的交流电机原理及启动、调速、制动特性,用Modelica设计和仿真一个用三相交流异步电机带动起重机起升机构运行。具体要求如下:

    1)实现如下机械运动周期:

    • 控制电机带重物上升,从静止加速到800r/min
    • 保持800r/min匀速运动0.5s,
    • 减速到静止,保持静止状态0.5s,
    • 带重物下降,从静止达到600r/min
    • 保持600r/min匀速运动0.6s,
    • 减速到静止。
      (为了便于仿真,匀速和静止持续时间较短)

    2) 升降机构和重物折算到到电机转子轴上的等效负载惯量为1Kg.m^2,折算到到电机转子轴上的等效负载转矩是15N.m。

    3)使用统一的电机模型,如果控制策略中用到转子串电阻,允许将该电机的转子改为绕线式转子(参数不变)。

    4)参照教材中给出的交流电机启动、调速和制动方法,设计控制策略,用Modelica实现控制策略并与电机模型实现联合仿真。

    5)可以采用定子串电阻、转子串电阻、定子调压、定子调频等手段,但必须具备工程上的可实施性。

    6)评价指标:快速启动、制动,冲击转矩和冲击电流小,能耗小,兼顾实施的经济性。

    分析

    ⑴启动:采用自耦变压器降压启动,取K=0.8

    ⑵调速: 采用变频调速。三个频率分别为

    n=800,f=0.54*fn;

    n=0,f=0.069*fn;

    n=-600,f=0.39*fn。

    这三个频率本该用公式计算出,但个人能力有限,多次试验后参考了熊唐程同学的参数得出了这三个频率。采用变频调速是因为调速范围广,调速平滑性好,经济效益高。

    ⑶制动:根据书上所述,“卷扬机放下重物,为了使下降速度不致太快,就常用这种工作状态”,这里的“这种状态”就是指倒拉制动。此处串联的电阻设为R=2 ohm。

    代码

    model SACIM "A Simple AC Induction Motor Model"

    type Voltage=Real(unit="V");

    type Current=Real(unit="A");

    type Resistance=Real(unit="Ohm");

    type Inductance=Real(unit="H");

    type Speed=Real(unit="r/min");

    type Torque=Real(unit="N.m");

    type Inertia=Real(unit="kg.m^2");

    type Frequency=Real(unit="Hz");

    type Flux=Real(unit="Wb");

    type Angle=Real(unit="rad");

    type AngularVelocity=Real(unit="rad/s");

    constant Real Pi = 3.1415926;

    Current i_A"A Phase Current of Stator";

    Current i_B"B Phase Current of Stator";

    Current i_C"C Phase Current of Stator";

    Voltage u_A"A Phase Voltage of Stator";

    Voltage u_B"B Phase Voltage of Stator";

    Voltage u_C"C Phase Voltage of Stator";

    Current i_a"A Phase Current of Rotor";

    Current i_b"B Phase Current of Rotor";

    Current i_c"C Phase Current of Rotor";

    Frequency f_s"Frequency of Stator";

    Torque Tm"Torque of the Motor";

    Speed n"Speed of the Motor";

    Flux Psi_A"A Phase Flux-Linkage of Stator";

    Flux Psi_B"B Phase Flux-Linkage of Stator";

    Flux Psi_C"C Phase Flux-Linkage of Stator";

    Flux Psi_a"a Phase Flux-Linkage of Rotor";

    Flux Psi_b"b Phase Flux-Linkage of Rotor";

    Flux Psi_c"c Phase Flux-Linkage of Rotor";

    Angle phi"Electrical Angle of Rotor";

    Angle phi_m"Mechnical Angle of Rotor";

    AngularVelocity w"Angular Velocity of Rotor";

    Torque Tl"Load Torque";

    Resistance Rs"Stator Resistance";

    parameter Resistance Rr=0.408"Rotor Resistance";

    parameter Inductance Ls = 0.00252"Stator Leakage Inductance";

    parameter Inductance Lr = 0.00252"Rotor Leakage Inductance";

    parameter Inductance Lm = 0.00847"Mutual Inductance";

    parameter Frequency f_N = 50"Rated Frequency of Stator";

    parameter Voltage u_N = 220"Rated Phase Voltage of Stator";

    parameter Real p =2"number of pole pairs";

    parameter Inertia Jm = 0.1"Motor Inertia";

    parameter Inertia Jl = 1"Load Inertia";

    parameter Real K=0.8"starting rate";

    parameter Real a=0.54"frequency rate";

    parameter Real b=0.069"stable frequency rate";

    parameter Real c=0.39"another frequency rate";

    parameter Real P=0.7"stoping rate";

    initial equation

    Psi_A = 0;

    Psi_B = 0;

    Psi_C = 0;

    Psi_a = 0;

    Psi_b = 0;

    Psi_c = 0;

    phi = 0;

    w = 0;

    equation

    u_A = Rs * i_A + 1000 * der(Psi_A);

    u_B = Rs * i_B + 1000 * der(Psi_B);

    u_C = Rs * i_C + 1000 * der(Psi_C);

    0 = Rr * i_a + 1000 * der(Psi_a);

    0 = Rr * i_b + 1000 * der(Psi_b);

    0 = Rr * i_c + 1000 * der(Psi_c);

    Psi_A = (Lm+Ls)*i_A + (-0.5*Lm)*i_B + (-0.5*Lm)*i_C + (Lm*cos(phi))*i_a + (Lm*cos(phi+2*Pi/3))*i_b + (Lm*cos(phi-2*Pi/3))*i_c;

    Psi_B = (-0.5*Lm)*i_A + (Lm+Ls)*i_B + (-0.5*Lm)*i_C + (Lm*cos(phi-2*Pi/3))*i_a + (Lm*cos(phi))*i_b + (Lm*cos(phi+2*Pi/3))*i_c;

    Psi_C = (-0.5*Lm)*i_A + (-0.5*Lm)*i_B + (Lm+Ls)*i_C + (Lm*cos(phi+2*Pi/3))*i_a + (Lm*cos(phi-2*Pi/3))*i_b + (Lm*cos(phi))*i_c;

    Psi_a = (Lm*cos(phi))*i_A + (Lm*cos(phi-2*Pi/3))*i_B + (Lm*cos(phi+2*Pi/3))*i_C + (Lm+Lr)*i_a + (-0.5*Lm)*i_b + (-0.5*Lm)*i_c;

    Psi_b = (Lm*cos(phi+2*Pi/3))*i_A + (Lm*cos(phi))*i_B + (Lm*cos(phi-2*Pi/3))*i_C + (-0.5*Lm)*i_a + (Lm+Lr)*i_b + (-0.5*Lm)*i_c;

    Psi_c = (Lm*cos(phi-2*Pi/3))*i_A + (Lm*cos(phi+2*Pi/3))*i_B + (Lm*cos(phi))*i_C + (-0.5*Lm)*i_a + (-0.5*Lm)*i_b + (Lm+Lr)*i_c;

    Tm =-p*Lm*((i_A*i_a+i_B*i_b+i_C*i_c)*sin(phi)+(i_A*i_b+i_B*i_c+i_C*i_a)*sin(phi+2*Pi/3)+(i_A*i_c+i_B*i_a+i_C*i_b)*sin(phi-2*Pi/3));

    w = 1000 * der(phi_m);

    phi_m = phi/p;

    n= w*60/(2*Pi);

    Tm-Tl = (Jm+Jl) * 1000 * der(w);

    Tl = 15;

    if time <= 100 then

    u_A = 0;

    u_B = 0;

    u_C = 0;

    f_s = 0;Rs = 0.531;

    elseif time<=180 then

    f_s = f_N*a; Rs = 0.531;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*K*a;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*K*a;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*K*a;

    elseif time<=1870 then

    f_s = f_N*a;Rs = 0.531;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*a;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*a;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*a;

    elseif time<=1930 then

    f_s = f_N*a;Rs = 2;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*a;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*a;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*a;

    elseif time<=2841 then

    f_s = f_N*a;Rs = 0.531;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*a;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*a;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*a;

    elseif time<=3450 then

    f_s = f_N*b;Rs = 0.531;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*b;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*b;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*b;

    elseif time<=3571 then

    f_s = f_N*K*c;Rs = 0.531;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*K*c;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*K*c;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*K*c;

    elseif time<=4980 then

    f_s = f_N*c;Rs = 0.531;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*c;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*c;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*c;

    elseif time<=5050 then

    f_s = f_N*P*a;Rs = 2;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*a*P;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*a*P;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*a*P;

    elseif time<=6000 then

    f_s = f_N*a;Rs = 0.531;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*a;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*a;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*a;

    else

    f_s = f_N*b;Rs = 0.531;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*b;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*b;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*b;

    end if;

    end SACIM;

    结论

    0-1000之间转速增加不均匀,稳定性一般,全程的冲击转矩不超过200N.m。

  • 相关阅读:
    vim编辑swap file
    fork: retry: Resource temporarily unavailable 解决方案
    扫描目录下的文件并拼接在一起
    linux 下批量创建文件夹
    存储过程批量插入表数据
    多用户登录系统操作流程——Python多线程
    触发器报错“Not allowed to return a result set from a trigger”的解决方案
    window + anaconda + python3.6 + dlib
    查看Ubantu磁盘信息
    numpy和tensorflow中矩阵乘法的区别
  • 原文地址:https://www.cnblogs.com/wzh111/p/5299524.html
Copyright © 2011-2022 走看看