zoukankan      html  css  js  c++  java
  • 【模板】FFT

    FFT 的本质是在 (O(nlogn)) 的时间内进行点值表达和系数表达之间的转换,并在 (O(n)) 的时间内计算结果,故总时间复杂度为 (O(logn))
    FFT注意事项

    • 由于 tot 采用的是倍增的方式,因此实际内存开销可能是 (2(n+m))
    • 多项式的项数和次数不同。

    update at 2019.10.11
    代码如下

    #include <bits/stdc++.h>
    
    using namespace std;
    
    typedef long long LL;
    
    const LL mod = 998244353, g = 3, ig = 332748118;
    
    inline LL fpow(LL a, LL b) {
    	LL ret = 1 % mod;
    	for (; b; b >>= 1, a = a * a % mod) {
    		if (b & 1) {
    			ret = ret * a % mod;
    		}
    	}
    	return ret;
    }
    
    void ntt(vector<LL> &v, vector<int> &rev, int opt) {
    	int tot = v.size();
    	for (int i = 0; i < tot; i++) if (i < rev[i]) swap(v[i], v[rev[i]]);
    	for (int mid = 1; mid < tot; mid <<= 1) {
    		LL wn = fpow(opt == 1 ? g : ig, (mod - 1) / (mid << 1));
    		for (int j = 0; j < tot; j += mid << 1) {
    			LL w = 1;
    			for (int k = 0; k < mid; k++) {
    				LL x = v[j + k], y = v[j + mid + k] * w % mod;
    				v[j + k] = (x + y) % mod, v[j + mid + k] = (x - y + mod) % mod;
    				w = w * wn % mod;
    			}
    		}
    	}
    	if (opt == -1) {
    		LL itot = fpow(tot, mod - 2);
    		for (int i = 0; i < tot; i++) v[i] = v[i] * itot % mod;
    	}
    }
    vector<LL> convolution(vector<LL> &a, int cnta, vector<LL> &b, int cntb, const function<LL(LL, LL)> &calc) {
    	int bit = 0, tot = 1;
    	while (tot <= 2 * max(cnta, cntb)) bit++, tot <<= 1;
    	vector<int> rev(tot);
    	for (int i = 0; i < tot; i++) rev[i] = rev[i >> 1] >> 1 | (i & 1) << (bit - 1);
    	vector<LL> foo(tot), bar(tot);
    	for (int i = 0; i < cnta; i++) foo[i] = a[i];
    	for (int i = 0; i < cntb; i++) bar[i] = b[i];
    	ntt(foo, rev, 1), ntt(bar, rev, 1);
    	for (int i = 0; i < tot; i++) foo[i] = calc(foo[i], bar[i]);
    	ntt(foo, rev, -1);
    	return foo;
    }
    
    int main() {
    	ios::sync_with_stdio(false);
    	cin.tie(0), cout.tie(0);
    	int n, m;
    	cin >> n >> m;
    	vector<LL> a(n + 1), b(m + 1);
    	for (int i = 0; i <= n; i++) {
    		cin >> a[i];
    	}
    	for (int i = 0; i <= m; i++) {
    		cin >> b[i];
    	}
    	vector<LL> c = convolution(a, n + 1, b, m + 1, [&](LL a, LL b) {
    		return a * b % mod;
    	});
    	for (int i = 0; i <= n + m; i++) {
    		cout << c[i] << " ";
    	}
    	return 0;
    } 
    
  • 相关阅读:
    Java编程练习(四)——集合框架应用
    89. Gray Code (Java)
    加解密算法
    Cookie、Session和Token
    87. Scramble String (Java)
    51. N-Queens (JAVA)
    85. Maximal Rectangle (JAVA)
    84. Largest Rectangle in Histogram (JAVA)
    81. Search in Rotated Sorted Array II (JAVA)
    77. Combinations (JAVA)
  • 原文地址:https://www.cnblogs.com/wzj-xhjbk/p/10808598.html
Copyright © 2011-2022 走看看