(N le 2000, M le 2000)
直接利用递推式预处理即可。
代码如下
#include <bits/stdc++.h>
using namespace std;
const int mod = 1e9 + 7;
int main() {
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int n;
cin >> n;
static int f[2010][2010];
for (int i = 0; i <= 2000; i++) {
f[i][0] = 1;
}
for (int i = 1; i <= 2000; i++) {
for (int j = 1; j <= 2000; j++) {
f[i][j] = (f[i - 1][j] + f[i - 1][j - 1]) % mod;
}
}
while (n--) {
int a, b;
cin >> a >> b;
cout << f[a][b] << endl;
}
return 0;
}
(N, M le 1e5)
预处理出阶乘和阶乘的逆元,利用组合数的定义直接回答。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int mod = 1e9 + 7;
const int maxn = 1e5 + 10;
LL fpow(LL a, LL b) {
LL ret = 1 % mod;
for (; b; b >>= 1, a = a * a % mod) {
if (b & 1) {
ret = ret * a % mod;
}
}
return ret;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int n;
cin >> n;
vector<LL> inv(maxn), fac(maxn);
auto prework = [&]() {
fac[0] = 1;
for (int i = 1; i <= 1e5; i++) {
fac[i] = fac[i - 1] * i % mod;
}
inv[1e5] = fpow(fac[1e5], mod - 2);
for (int i = 1e5 - 1; i >= 0; i--) {
inv[i] = inv[i + 1] * (i + 1) % mod;
}
};
prework();
auto get = [&](int a, int b) {
return fac[a] * inv[a - b] % mod * inv[b] % mod;
};
while (n--) {
int a, b;
cin >> a >> b;
cout << get(a, b) << endl;
}
return 0;
}
/*
(a, b) = a! / ((a - b)! * b!)
a! = a * (a - 1)!
a!' * a = (a - 1)!'
*/
(N, M le 1e18, p le 1e5,p in prime)
预处理出 (1...p) 的阶乘和阶乘的逆元,用卢卡斯定理进行回答。
代码如下
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL fpow(LL a, LL b, LL c) {
LL ret = 1 % c;
for (; b; b >>= 1, a = a * a % c) {
if (b & 1) {
ret = ret * a % c;
}
}
return ret;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int n;
cin >> n;
while (n--) {
LL a, b, p;
cin >> a >> b >> p;
vector<LL> inv(p + 1), fac(p + 1);
fac[0] = 1;
for (int i = 1; i <= p; i++) {
fac[i] = fac[i - 1] * i % p;
}
inv[p - 1] = fpow(fac[p - 1], p - 2, p);
for (int i = p - 2; i >= 0; i--) {
inv[i] = inv[i + 1] * (i + 1) % p;
}
auto C = [&](LL x, LL y) -> LL {
if (x < y) {
return 0;
}
return fac[x] * inv[x - y] % p * inv[y] % p;
};
function<LL(LL, LL)> Lucas = [&](LL x, LL y) -> LL {
if (y == 0) {
return 1;
}
return C(x % p, y % p) * Lucas(x / p, y / p) % p;
};
cout << Lucas(a, b) << endl;
}
return 0;
}