zoukankan      html  css  js  c++  java
  • 【模板】组合数取模

    (N le 2000, M le 2000)
    直接利用递推式预处理即可。
    代码如下

    #include <bits/stdc++.h>
    
    using namespace std;
    
    const int mod = 1e9 + 7;
    
    int main() {
    	ios::sync_with_stdio(false);
    	cin.tie(0), cout.tie(0);
    	int n;
    	cin >> n;
    	static int f[2010][2010];
    	for (int i = 0; i <= 2000; i++) {
    		f[i][0] = 1;
    	}
    	for (int i = 1; i <= 2000; i++) {
    		for (int j = 1; j <= 2000; j++) {
    			f[i][j] = (f[i - 1][j] + f[i - 1][j - 1]) % mod;
    		}
    	}
    	while (n--) {
    		int a, b;
    		cin >> a >> b;
    		cout << f[a][b] << endl;
    	}
    	return 0;
    }
    

    (N, M le 1e5)
    预处理出阶乘和阶乘的逆元,利用组合数的定义直接回答。

    #include <bits/stdc++.h>
    
    using namespace std;
    
    typedef long long LL;
    
    const int mod = 1e9 + 7;
    const int maxn = 1e5 + 10;
    
    LL fpow(LL a, LL b) {
    	LL ret = 1 % mod;
    	for (; b; b >>= 1, a = a * a % mod) {
    		if (b & 1) {
    			ret = ret * a % mod;
    		}
    	}
    	return ret;
    }
    
    int main() {
    	ios::sync_with_stdio(false);
    	cin.tie(0), cout.tie(0);
    	int n;
    	cin >> n;
    	vector<LL> inv(maxn), fac(maxn);
    	auto prework = [&]() {
    		fac[0] = 1;
    		for (int i = 1; i <= 1e5; i++) {
    			fac[i] = fac[i - 1] * i % mod;
    		}
    		inv[1e5] = fpow(fac[1e5], mod - 2);
    		for (int i = 1e5 - 1; i >= 0; i--) {
    			inv[i] = inv[i + 1] * (i + 1) % mod;
    		}
    	};
    	prework();
    	auto get = [&](int a, int b) {
    		return fac[a] * inv[a - b] % mod * inv[b] % mod;
    	};
    	while (n--) {
    		int a, b;
    		cin >> a >> b;
    		cout << get(a, b) << endl;
    	}
    	return 0;
    }
    /*
    (a, b) = a! / ((a - b)! * b!)
    a! = a * (a - 1)!
    a!' * a = (a - 1)!'
    */
    

    (N, M le 1e18, p le 1e5,p in prime)
    预处理出 (1...p) 的阶乘和阶乘的逆元,用卢卡斯定理进行回答。
    代码如下

    #include <bits/stdc++.h>
    
    using namespace std;
    
    typedef long long LL;
    
    LL fpow(LL a, LL b, LL c) {
    	LL ret = 1 % c;
    	for (; b; b >>= 1, a = a * a % c) {
    		if (b & 1) {
    			ret = ret * a % c;
    		}
    	}
    	return ret;
    }
    
    int main() {
    	ios::sync_with_stdio(false);
    	cin.tie(0), cout.tie(0);
    	int n;
    	cin >> n;
    	while (n--) {
    		LL a, b, p;
    		cin >> a >> b >> p;
    		vector<LL> inv(p + 1), fac(p + 1);
    		fac[0] = 1;
    		for (int i = 1; i <= p; i++) {
    			fac[i] = fac[i - 1] * i % p;
    		}
    		inv[p - 1] = fpow(fac[p - 1], p - 2, p);
    		for (int i = p - 2; i >= 0; i--) {
    			inv[i] = inv[i + 1] * (i + 1) % p;
    		}
    		auto C = [&](LL x, LL y) -> LL {
    			if (x < y) {
    				return 0;
    			}
    			return fac[x] * inv[x - y] % p * inv[y] % p;
    		};
    		function<LL(LL, LL)> Lucas = [&](LL x, LL y) -> LL {
    			if (y == 0) {
    				return 1;
    			}
    			return C(x % p, y % p) * Lucas(x / p, y / p) % p;
    		};
    		cout << Lucas(a, b) << endl;
    	}
    	return 0;
    }
    
  • 相关阅读:
    ubuntu中,终端命令行快速打开html文件方法
    Python清空文本内容的两种方法
    科大教学日历
    MJ瀑布流学习笔记
    iOS搜索框
    异步IO
    yield
    ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
    15个常用的javaScript正则表达式
    Linux 升级 Python 至 3.x
  • 原文地址:https://www.cnblogs.com/wzj-xhjbk/p/11607902.html
Copyright © 2011-2022 走看看