题目大意:给定一个长度为 N 的序列,现有 M 种颜色,选出一些颜色对这个序列进行染色,要求相邻元素颜色不相同。求最终序列恰好有 K 种不同颜色的染色方案数,结果对1e9+7取模。
题解:二项式反演
代码如下
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod = 1e9 + 7;
const int maxn = 1e6 + 10;
LL fpow(LL a, LL b) {
LL ret = 1 % mod;
for (; b; b >>= 1, a = a * a % mod) {
if (b & 1) {
ret = ret * a % mod;
}
}
return ret;
}
LL fac[maxn], ifac[maxn];
void prework() {
int n = 1e6;
fac[0] = fac[1] = 1;
for (int i = 2; i <= n; i++) {
fac[i] = fac[i - 1] * i % mod;
}
ifac[n] = fpow(fac[n], mod - 2);
for (int i = n - 1; i >= 0; i--) {
ifac[i] = ifac[i + 1] * (i + 1) % mod;
}
}
inline LL comb1(int x, int y) {
if (y > x) {
return 0;
}
return fac[x] * ifac[x - y] % mod * ifac[y] % mod;
}
inline LL comb2(int x, int y) {
if (y > x) {
return 0;
}
LL ret = 1;
for (int i = x; i >= x - y + 1; i--) {
ret = ret * i % mod;
}
return ret * ifac[y] % mod;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
prework();
int T, kase = 0;
cin >> T;
while (T--) {
int n, m, K;
cin >> n >> m >> K;
auto f = [&](int x) {
LL ret = x;
return ret * fpow(x - 1, n - 1) % mod;
};
LL ans = 0;
if (K == 1) {
ans = (n == 1) ? 1 : 0;
} else {
for (int i = 1; i <= K; i++) {
if ((K - i) & 1) {
ans = (ans - comb1(K, i) * f(i) % mod + mod) % mod;
} else {
ans = (ans + comb1(K, i) * f(i) % mod) % mod;
}
}
}
cout << "Case #" << ++kase << ": " << ans * comb2(m, K) % mod << endl;
}
return 0;
}