zoukankan      html  css  js  c++  java
  • 647. Palindromic Substrings

    Given a string, your task is to count how many palindromic substrings in this string.

    The substrings with different start indexes or end indexes are counted as different substrings even they consist of same characters.

    Example 1:

    Input: "abc"
    Output: 3
    Explanation: Three palindromic strings: "a", "b", "c".
    

     Example 2:

    Input: "aaa"
    Output: 6
    Explanation: Six palindromic strings: "a", "a", "a", "aa", "aa", "aaa".
    

     Note:

    1. The input string length won't exceed 1000.

    题目含义:找出一个字符串中所有可能出现的回文子串的个数

    方法一:像水的波纹一样,从两个位置(ij)开始依次往外扩散,直到不符合回文为止

     1     private int count;    
     2     
     3     //找到以i,j为中心,往外扩散能构成的回文串个数
     4     private void checkPalindrome(String s, int i, int j) {
     5         while(i>=0 && j<s.length() && s.charAt(i)==s.charAt(j)){    //Check for the palindrome string
     6             count++;    //Increment the count if palindromin substring found
     7             i--;    //To trace string in left direction
     8             j++;    //To trace string in right direction
     9         }
    10     }    
    11     
    12     public int countSubstrings(String s) {
    13         if (s.length()==0) return 0;
    14         for (int i=0;i<s.length();i++)
    15         {
    16             checkPalindrome(s,i,i);
    17             checkPalindrome(s,i,i+1);
    18         }
    19         return count;        
    20     }

     方法二:dp[len][len]  代表[i,j]之间是否构成回文字符串

     1     public int countSubstrings(String s) {
     2         if(s == null || s.length() == 0)
     3             return 0;
     4         int len = s.length();
     5         int res = 0;
     6         boolean[][] dp = new boolean[len][len]; //代表[i,j]之间是否构成回文字符串
     7         for(int i = len - 1; i >= 0; i--){
     8             for(int j = i; j < len; j++){
     9                 //首先i和j位置上的字符要相等 ,其次i和j的距离不超过2,如果超过2了,则要求[i+1,j-1]能构成回文串
    10                 if(s.charAt(i) == s.charAt(j) && (j - i <= 2 || dp[i + 1][j - 1])){
    11                     dp[i][j] = true;
    12                     res++;
    13                 }
    14             }
    15         }
    16         return res;     
    17     }
  • 相关阅读:
    request常用的方法
    JS通过正则限制 input 输入框只能输入整数、小数(金额或者现金)
    基于云原生的秒杀系统设计思路
    html<input>输入框中各种正则表达式设置
    cursor:hand与cursor:pointer的区别介绍
    读入/输出优化
    手动扩栈,防止溢出
    快速乘(O(1))
    二分图若干性质
    康拓展开
  • 原文地址:https://www.cnblogs.com/wzj4858/p/7687046.html
Copyright © 2011-2022 走看看