zoukankan      html  css  js  c++  java
  • 647. Palindromic Substrings

    Given a string, your task is to count how many palindromic substrings in this string.

    The substrings with different start indexes or end indexes are counted as different substrings even they consist of same characters.

    Example 1:

    Input: "abc"
    Output: 3
    Explanation: Three palindromic strings: "a", "b", "c".
    

     Example 2:

    Input: "aaa"
    Output: 6
    Explanation: Six palindromic strings: "a", "a", "a", "aa", "aa", "aaa".
    

     Note:

    1. The input string length won't exceed 1000.

    题目含义:找出一个字符串中所有可能出现的回文子串的个数

    方法一:像水的波纹一样,从两个位置(ij)开始依次往外扩散,直到不符合回文为止

     1     private int count;    
     2     
     3     //找到以i,j为中心,往外扩散能构成的回文串个数
     4     private void checkPalindrome(String s, int i, int j) {
     5         while(i>=0 && j<s.length() && s.charAt(i)==s.charAt(j)){    //Check for the palindrome string
     6             count++;    //Increment the count if palindromin substring found
     7             i--;    //To trace string in left direction
     8             j++;    //To trace string in right direction
     9         }
    10     }    
    11     
    12     public int countSubstrings(String s) {
    13         if (s.length()==0) return 0;
    14         for (int i=0;i<s.length();i++)
    15         {
    16             checkPalindrome(s,i,i);
    17             checkPalindrome(s,i,i+1);
    18         }
    19         return count;        
    20     }

     方法二:dp[len][len]  代表[i,j]之间是否构成回文字符串

     1     public int countSubstrings(String s) {
     2         if(s == null || s.length() == 0)
     3             return 0;
     4         int len = s.length();
     5         int res = 0;
     6         boolean[][] dp = new boolean[len][len]; //代表[i,j]之间是否构成回文字符串
     7         for(int i = len - 1; i >= 0; i--){
     8             for(int j = i; j < len; j++){
     9                 //首先i和j位置上的字符要相等 ,其次i和j的距离不超过2,如果超过2了,则要求[i+1,j-1]能构成回文串
    10                 if(s.charAt(i) == s.charAt(j) && (j - i <= 2 || dp[i + 1][j - 1])){
    11                     dp[i][j] = true;
    12                     res++;
    13                 }
    14             }
    15         }
    16         return res;     
    17     }
  • 相关阅读:
    我的 conky 配置 (入门)
    三个字符编码问题的解决
    如何查看Mysql的版本
    oracle历险记纪实
    禁用USB总集
    如何更改Andrioid模拟器 avd路径
    linux 安装rpm包时遇到error:Failed dependencies解法方法
    最为流行的几款Java IDE
    android sdk 如何重新生成debug.keystore
    开始学习linux知识,每天做点总结
  • 原文地址:https://www.cnblogs.com/wzj4858/p/7687046.html
Copyright © 2011-2022 走看看