zoukankan      html  css  js  c++  java
  • 464. Can I Win

    In the "100 game," two players take turns adding, to a running total, any integer from 1..10. The player who first causes the running total to reach or exceed 100 wins.

    What if we change the game so that players cannot re-use integers?

    For example, two players might take turns drawing from a common pool of numbers of 1..15 without replacement until they reach a total >= 100.

    Given an integer maxChoosableInteger and another integer desiredTotal, determine if the first player to move can force a win, assuming both players play optimally.

    You can always assume that maxChoosableInteger will not be larger than 20 and desiredTotal will not be larger than 300.

    Example

    Input:
    maxChoosableInteger = 10
    desiredTotal = 11
    
    Output:
    false
    
    Explanation:
    No matter which integer the first player choose, the first player will lose.
    The first player can choose an integer from 1 up to 10.
    If the first player choose 1, the second player can only choose integers from 2 up to 10.
    The second player will win by choosing 10 and get a total = 11, which is >= desiredTotal.
    Same with other integers chosen by the first player, the second player will always win.
    题目含义:两个人玩游戏,从1~maxChoosableInteger中任选一个数字,第一个人先选,第二个人后选,每个人选过的数字就不能再选了~两个人谁先加起来总和超过desiredTotal谁就赢,问给出数字,第一个人能否赢得比赛

     1     private boolean canWin(int[] flag,int desiredTotal,HashMap<String,Boolean> map) {
     2         String state=Arrays.toString(flag);
     3         if(map.containsKey(state))
     4             return map.get(state);
     5         for(int i=1;i<flag.length;i++){
     6             if(flag[i]==0){
     7                 flag[i]=1;
     8                 //当前获胜情况有2种:当前所选取的元素大于还剩余的差;选取当前元素之后,接下来的不能获胜,即对方怎么都输,则自己肯定赢。
     9                 if(i>=desiredTotal||!canWin(flag,desiredTotal-i,map)){
    10                     map.put(state,true);
    11                     flag[i]=0;
    12                     return true;
    13                 }
    14                 flag[i]=0;
    15             }
    16         }
    17         map.put(state,false);
    18         return false;
    19     }
    20     
    21     public boolean canIWin(int maxChoosableInteger, int desiredTotal) {
    22 //        动态规划,利用一个数组存储哪些元素已经被选了,然后接下来的游戏便不能选那些已选的元素
    23         if(desiredTotal<=maxChoosableInteger)
    24             return true;
    25         if(desiredTotal>maxChoosableInteger*(maxChoosableInteger+1)/2)
    26             return false;
    27         int[] flag=new int[maxChoosableInteger+1];
    28         return canWin(flag,desiredTotal,new HashMap<String,Boolean>());        
    29     }


  • 相关阅读:
    hdu 5446 Unknown Treasure lucas和CRT
    Hdu 5444 Elven Postman dfs
    hdu 5443 The Water Problem 线段树
    hdu 5442 Favorite Donut 后缀数组
    hdu 5441 Travel 离线带权并查集
    hdu 5438 Ponds 拓扑排序
    hdu 5437 Alisha’s Party 优先队列
    HDU 5433 Xiao Ming climbing dp
    hdu 5432 Pyramid Split 二分
    Codeforces Round #319 (Div. 1) B. Invariance of Tree 构造
  • 原文地址:https://www.cnblogs.com/wzj4858/p/7695139.html
Copyright © 2011-2022 走看看