zoukankan      html  css  js  c++  java
  • hdu2767之强联通缩点

    Proving Equivalences

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2768    Accepted Submission(s): 1038


    Problem Description
    Consider the following exercise, found in a generic linear algebra textbook.

    Let A be an n × n matrix. Prove that the following statements are equivalent:

    1. A is invertible.
    2. Ax = b has exactly one solution for every n × 1 matrix b.
    3. Ax = b is consistent for every n × 1 matrix b.
    4. Ax = 0 has only the trivial solution x = 0. 

    The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

    Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

    I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove?

    Can you help me determine this?

     

    Input
    On the first line one positive number: the number of testcases, at most 100. After that per testcase:

    * One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
    * m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
     

    Output
    Per testcase:

    * One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
     

    Sample Input
    2 4 0 3 2 1 2 1 3
     

    Sample Output
    4 2
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <string>
    #include <queue>
    #include <algorithm>
    #include <map>
    #include <cmath>
    #include <iomanip>
    #define INF 99999999
    typedef long long LL;
    using namespace std;
    
    const int MAX=20000+10;
    int n,m,size,top,index,ind,oud;
    int head[MAX],dfn[MAX],low[MAX],stack[MAX];
    int mark[MAX],flag[MAX];
    //dfn表示点u出现的时间,low表示点u能到达所属环中最早出现的点(记录的是到达的时间) 
    
    struct Edge{
    	int v,next;
    	Edge(){}
    	Edge(int V,int NEXT):v(V),next(NEXT){}
    }edge[50000+10];
    
    void Init(int num){
    	for(int i=0;i<=num;++i)head[i]=-1;
    	size=top=index=ind=oud=0;
    }
    
    void InsertEdge(int u,int v){
    	edge[size]=Edge(v,head[u]);
    	head[u]=size++;
    }
    
    void tarjan(int u){
    	if(mark[u])return;
    	dfn[u]=low[u]=++index;
    	stack[++top]=u;
    	mark[u]=1;
    	for(int i=head[u];i != -1;i=edge[i].next){
    		int v=edge[i].v;
    		tarjan(v);
    		if(mark[v] == 1)low[u]=min(low[u],low[v]);//必须点v在栈里面才行 
    	}
    	if(dfn[u] == low[u]){
    		++ind,++oud;//计算缩点后点的个数,方便计算入度和出度
    		while(stack[top] != u){
    			mark[stack[top]]=-1;
    			low[stack[top--]]=low[u];
    		}
    		mark[u]=-1;
    		--top;
    	}
    }
    
    int main(){
    	int t,u,v;
    	scanf("%d",&t);
    	while(t--){
    		scanf("%d%d",&n,&m);
    		Init(n);
    		for(int i=0;i<m;++i){
    			scanf("%d%d",&u,&v);
    			InsertEdge(u,v);
    		}
    		memset(mark,0,sizeof mark);
    		for(int i=1;i<=n;++i){
    			if(mark[i])continue;
    			tarjan(i);//tarjan用来缩点 
    		}
    		if(ind == 1){cout<<0<<endl;continue;} 
    		for(int i=0;i<=n;++i)mark[i]=flag[i]=0;
    		for(int i=1;i<=n;++i){
    			for(int j=head[i];j != -1;j=edge[j].next){
    				v=edge[j].v;
    				if(low[i] == low[v])continue;
    				if(mark[low[i]] == 0)--oud;//mark标记点u是否有出度
    				if(flag[low[v]] == 0)--ind;//flag标记点u是否有入度
    				mark[low[i]]=1,flag[low[v]]=1; 
    			}
    		}
    		printf("%d
    ",max(oud,ind));
    	}
    	return 0;
    }



  • 相关阅读:
    你想要的是水还是杯子?
    有哪些违背“君子之风”的无知行为
    如何给无限级树添加大纲目录索引
    0的哲学:简化规则
    计算机中的不可解问题——停机问题
    java基于mongodb实现分布式锁
    开源基于docker的任务调度器pipeline,比`quartzs` 更强大的分布式任务调度器
    解决 VSCode 的模块导入别名问题
    hugegraph 源码解读 —— 索引与查询优化分析
    Java xss攻击拦截,Java CSRF跨站点伪造请求拦截
  • 原文地址:https://www.cnblogs.com/wzjhoutai/p/6776133.html
Copyright © 2011-2022 走看看