zoukankan      html  css  js  c++  java
  • 回溯法——求解0-1背包问题


             曾经研究过一个简单的N皇后问题对回溯法也有了个模糊的认识,大致理解就是:先一直做某件事,当完毕某个条件时或者是触犯某个条件时。再返回到近期的一个类似还原点的地方


           在用回溯法求解0-1背包问题的时候。主要遇到三个相对难解决的问题:1。什么是界限函数;2,什么时候用它;3,回溯到哪儿。





       什么是界限函数?



            例如以下图:

                当我们身在一棵搜索空间树中,站在一个K点举棋不定的时候。我们能够用它估算假设我们继续向下走,我们走完本段路会获得的总价值。

    假设我们如今有一个最大解,当我用界限函数算出一个价值后和我当前的最大解比較。假设能获得更大利益。我们选择继续向下走,假设不能。果断放弃。


             从下图中的伪代码能够看出,我们计算后半段最大价值的时候。使用的还是一个贪心算法。尽管切割的情况是不被同意的,可是我们能够用这个结果来进行估算。




           

            


    回溯法得到的搜索空间树:



         

                

           




        什么时候使用界限函数?


                    

           数学一点儿的说法是:当X[i]=0时。

     

       通俗一点说:当进入右结点的时候。



       怎样回溯的问题?


            向上回溯到第一个不是0的结点(而且这个结点不是顶点)。


                   


       求解思路

                    


                   如上图搜索树。在建立搜索树之前,我将全部的物品依照V/W(价值重量比)从大到小排序。然后从第一个開始。依次向背包(背包大小110)中放入,放到第6个的时候,这时候发现6太大了,不能装入了,这时候用界限函数推断下,假设继续下去。会获得的最大价值,得出这个价值后,和上几次查找得到的最大价值对照可是由于我们在这之前还没有获得过别的解,所以界限函数再和最大价值的初值-1比較的时候,总是会选择继续。这样我们就得到了一个解139.然后我们回溯到第一个X[i]不等于0的地方,此处为X[5],然后将X[5]置为0。这时候X[5]置0了,我们就先用界限函数推断下X[6]到X[8]的情况,得出了个164.44,这个比我们上次得到的第一个解也是最大的解139大。说明向后继续,肯会出现一个比139还大的解,所以我们选择向后继续。。

    。。。


                   。。

    。。。。。


                但我们回溯到X[1]的时候。我们将X[1]置0。这时候用界限函数估算下物品2到物品8可能获得的最大价值,发现是155.11,比我们实际得到的最大解159还小,然后果断放弃,再向上回溯,发现这已经到了尽头了,然后停止。

                     


                      结合曾经的N皇后问题,N皇后问题是我一行一行的放皇后。假设当下一行放到最后一个位置的时候还是会产生攻击。这时候我们就调整上一行皇后的位置,然后再回到本行从第一个開始放。对照0-1背包,这个是完毕一次求解过程,然后就回溯继续求解。

                


                所以,回溯法是先一直做,做不下去了,然后才向回走。





         小结:

                        0-1背包问题的用回溯法解决最開始提出的三个问题挺关键的,试想,假设一个问题足够大的话。用界限函数可以砍掉非常多不合条件的子节点。极大的提高了效率。












  • 相关阅读:
    java 计算文件 md5值
    前端项目结构
    路由器下连接路由器教程
    idea 中抽取部分代码
    idea 多行注释 Ctrl shift / 失效问题
    idea Ctrl+shift+F 快捷键失效原因
    Android studio 安装 jrebel for Android 下载不了问题
    利用C#创建和安装一个windows服务
    25条提高Visual Studio编码和调试效率的技巧
    IIS解决 上传文件大小限制
  • 原文地址:https://www.cnblogs.com/wzjhoutai/p/7133417.html
Copyright © 2011-2022 走看看