zoukankan      html  css  js  c++  java
  • 项目笔记《DeepLung:Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification》(一)预处理

    最近一个月都在做肺结节的检测,学到了不少东西,运行的项目主要是基于这篇论文,在github上可以查到项目代码。

    我个人总结的肺结节检测可以分为三个阶段,数据预处理,网络搭建及训练,结果评估。

    这篇博客主要分析一下项目预处理部分的代码实现。

    预处理的全部代码都在prepare.py中,对原始数据进行处理,输出预处理后的数据。

    首先是主函数

    def preprocess_luna():
        luna_segment = config['luna_segment']#存放CT掩码的路径
        savepath = config['preprocess_result_path']#存放预处理后数据的路径
        luna_data = config['luna_data']#LUNA16的原始数据
        luna_label = config['luna_label']#存放所有病例标签的文件
        finished_flag = '.flag_preprocessluna'#是否已经预处理过的标志
        print('starting preprocessing luna')
        if not os.path.exists(finished_flag):
            annos = np.array(pandas.read_csv(luna_label))
            pool = Pool()#开启线程池
            if not os.path.exists(savepath):
                os.mkdir(savepath)
            for setidx in xrange(10):#十份数据
                print 'process subset', setidx
                filelist = [f.split('.mhd')[0] for f in os.listdir(luna_data+'subset'+str(setidx)) if f.endswith('.mhd') ]#原始数据为.mhd文件,只保留文件名,去掉.mhd后缀
                if not os.path.exists(savepath+'subset'+str(setidx)):
                    os.mkdir(savepath+'subset'+str(setidx))#为每份数据创建存放预处理结果的文件夹
                partial_savenpy_luna = partial(savenpy_luna, annos=annos, filelist=filelist,#函数修饰器,将一些参数预先设定,后面调用更简洁
                                           luna_segment=luna_segment, luna_data=luna_data+'subset'+str(setidx)+'/', 
                                           savepath=savepath+'subset'+str(setidx)+'/')
                N = len(filelist)
                #savenpy(1)
                _=pool.map(partial_savenpy_luna,range(N))#将函数调用在序列的每个元素上,返回一个含有所有返回值的列表
            pool.close()#关闭线程池
            pool.join()
        print('end preprocessing luna')
        f= open(finished_flag,"w+")#预处理结束,写入结束标志
    

    上面的代码就是预处理的全部代码,当然里面还调用了其它函数,主要的流程就是针对十份数据中的每一份,针对每一份中的每一个case(CT图像,以.mhd格式存储),分别处理,为加快速度,在每份数据中,针对每个文件分别开启一个线程,我试过不用线程,采取循环处理,速度确实慢了很多。

    上面的代码中最关键的就是数据预处理函数savenpy_luna,在主函数中已经设定好一部分参数,如文件名列表,标签,掩码,原始数据,预处理存储路径,万事俱备,只欠实现,接下来就看一下savenpy_luna的代码。

    def savenpy_luna(id, annos, filelist, luna_segment, luna_data,savepath):
        islabel = True
        isClean = True
        resolution = np.array([1,1,1])
    #     resolution = np.array([2,2,2])
        name = filelist[id]
        
        sliceim,origin,spacing,isflip = load_itk_image(os.path.join(luna_data,name+'.mhd'))#加载原始数据
    
        Mask,origin,spacing,isflip = load_itk_image(os.path.join(luna_segment,name+'.mhd'))#加载相应的掩码
        if isflip:    #这一步没看懂
            Mask = Mask[:,::-1,::-1]
        newshape = np.round(np.array(Mask.shape)*spacing/resolution).astype('int')#获取mask在新分辨率下的尺寸
        m1 = Mask==3    #LUNA16的掩码有两种值,3和4
        m2 = Mask==4
        Mask = m1+m2    #将两种掩码合并
        
        xx,yy,zz= np.where(Mask)   #确定掩码的边界
        box = np.array([[np.min(xx),np.max(xx)],[np.min(yy),np.max(yy)],[np.min(zz),np.max(zz)]])
        box = box*np.expand_dims(spacing,1)/np.expand_dims(resolution,1)  #对边界即掩码的最小外部长方体应用新分辨率
        box = np.floor(box).astype('int')
        margin = 5
        extendbox = np.vstack([np.max([[0,0,0],box[:,0]-margin],0),np.min([newshape,box[:,1]+2*margin],axis=0).T]).T    #对box留置一定空白
    
        this_annos = np.copy(annos[annos[:,0]==(name)])        #读取该病例对应标签
    
        if isClean:
            convex_mask = m1      
            dm1 = process_mask(m1)                     #对掩码采取膨胀操作,去除肺部黑洞
            dm2 = process_mask(m2)
            dilatedMask = dm1+dm2
            Mask = m1+m2
    
            extramask = dilatedMask ^ Mask
            bone_thresh = 210
            pad_value = 170
    
            if isflip:
                sliceim = sliceim[:,::-1,::-1]
                print('flip!')
            sliceim = lumTrans(sliceim)   #对原始数据阈值化,并归一化
            sliceim = sliceim*dilatedMask+pad_value*(1-dilatedMask).astype('uint8')  #170对应归一化话后的水,掩码外的区域补充为水
            bones = (sliceim*extramask)>bone_thresh                        #210对应归一化后的骨头,凡是大于骨头的区域都填充为水
            sliceim[bones] = pad_value
            
            sliceim1,_ = resample(sliceim,spacing,resolution,order=1)    #对原始数据重采样,即采用新分辨率
            sliceim2 = sliceim1[extendbox[0,0]:extendbox[0,1],         #将extendbox内数据取出作为最后结果
                        extendbox[1,0]:extendbox[1,1],
                        extendbox[2,0]:extendbox[2,1]]
            sliceim = sliceim2[np.newaxis,...]
            np.save(os.path.join(savepath, name+'_clean.npy'), sliceim)
            np.save(os.path.join(savepath, name+'_spacing.npy'), spacing)
            np.save(os.path.join(savepath, name+'_extendbox.npy'), extendbox)
            np.save(os.path.join(savepath, name+'_origin.npy'), origin)
            np.save(os.path.join(savepath, name+'_mask.npy'), Mask)
    
        if islabel:
            this_annos = np.copy(annos[annos[:,0]==(name)])                 #一行代表一个结节,所以一个病例可能对应多行标签
            label = []
            if len(this_annos)>0:
                
                for c in this_annos:
                    pos = worldToVoxelCoord(c[1:4][::-1],origin=origin,spacing=spacing)   #将世界坐标转换为体素坐标
                    if isflip:
                        pos[1:] = Mask.shape[1:3]-pos[1:]
                    label.append(np.concatenate([pos,[c[4]/spacing[1]]]))
                
            label = np.array(label)
            if len(label)==0:
                label2 = np.array([[0,0,0,0]])          #若没有结节则设为全0
            else:
                label2 = np.copy(label).T
                label2[:3] = label2[:3]*np.expand_dims(spacing,1)/np.expand_dims(resolution,1)    #对标签应用新的分辨率
                label2[3] = label2[3]*spacing[1]/resolution[1]                         #对直径应用新的分辨率
                label2[:3] = label2[:3]-np.expand_dims(extendbox[:,0],1)                  #将box外的长度砍掉,也就是相对于box的坐标
                label2 = label2[:4].T
            np.save(os.path.join(savepath,name+'_label.npy'), label2)
            
        print(name)
    

    这段代码属实是长,慢慢看。  

    主要分为以下几步。

    1. 加载原始数据和掩码,用的是load_itk_image函数
    2. 求取掩码的边界,即非零部分的边缘,求出一个box,然后对其应用新的分辨率,也就是重采样,将分辨率统一,采用的函数是resample
    3. 将数据clip至-1200~600,此范围外的数据置为-1200或600,然后再将数据归一化至0~255,采用的是lum_trans函数
    4. 对掩码进行一下膨胀操作,去除肺部的小空洞,采用的函数是process_mask,然后对原始数据应用新掩码,并将掩码外的数据值为170(水的HU值经过归一化后的新数值)
    5. 将原始数据重采样,再截取box内的数据即可。
    6. 读取标签,将其转换为体素坐标,采用的函数是worldToVoxelCoord,再对其应用新的分辨率,最后注意,数据是box内的数据,所以坐标是相对box的坐标。
    7. 将预处理后的数据和标签以.npy格式存储

    针对上面用到的各种工具函数,分别解析下。

    加载图像:主要用到sitk模块,读取原始数据的numpy表示,以及origin和space,origin就是真实坐标的原点,space就是分辨率

    def load_itk_image(filename):
        with open(filename) as f:
            contents = f.readlines()
            line = [k for k in contents if k.startswith('TransformMatrix')][0]
            transformM = np.array(line.split(' = ')[1].split(' ')).astype('float')
            transformM = np.round(transformM)
            if np.any( transformM!=np.array([1,0,0, 0, 1, 0, 0, 0, 1])):
                isflip = True
            else:
                isflip = False
    
        itkimage = sitk.ReadImage(filename)
        numpyImage = sitk.GetArrayFromImage(itkimage)
         
        numpyOrigin = np.array(list(reversed(itkimage.GetOrigin())))
        numpySpacing = np.array(list(reversed(itkimage.GetSpacing())))
         
        return numpyImage, numpyOrigin, numpySpacing,isflip
    

    重采样:原始CT分辨率往往不一致,为便于应用网络,需要统一分辨率

    def resample(imgs, spacing, new_spacing,order=2):
        if len(imgs.shape)==3:
            new_shape = np.round(imgs.shape * spacing / new_spacing)
            true_spacing = spacing * imgs.shape / new_shape
            resize_factor = new_shape / imgs.shape
            imgs = zoom(imgs, resize_factor, mode = 'nearest',order=order)
            return imgs, true_spacing
        elif len(imgs.shape)==4:
            n = imgs.shape[-1]
            newimg = []
            for i in range(n):
                slice = imgs[:,:,:,i]
                newslice,true_spacing = resample(slice,spacing,new_spacing)
                newimg.append(newslice)
            newimg=np.transpose(np.array(newimg),[1,2,3,0])
            return newimg,true_spacing
        else:
            raise ValueError('wrong shape')
    

    坐标转换:给定的标签是世界坐标,单位是mm,需要转换为体素坐标,也就是在像素体内的坐标

    def worldToVoxelCoord(worldCoord, origin, spacing):
         
        stretchedVoxelCoord = np.absolute(worldCoord - origin)
        voxelCoord = stretchedVoxelCoord / spacing
        return voxelCoord
    

    掩码处理:这里对掩码进行膨胀处理

    def process_mask(mask):
        convex_mask = np.copy(mask)
        for i_layer in range(convex_mask.shape[0]):
            mask1  = np.ascontiguousarray(mask[i_layer])
            if np.sum(mask1)>0:
                mask2 = convex_hull_image(mask1)
                if np.sum(mask2)>1.5*np.sum(mask1):
                    mask2 = mask1
            else:
                mask2 = mask1
            convex_mask[i_layer] = mask2
        struct = generate_binary_structure(3,1)  
        dilatedMask = binary_dilation(convex_mask,structure=struct,iterations=10) 
        return dilatedMask
    

    归一化:将数据归一化至0~255

    def lumTrans(img):
        lungwin = np.array([-1200.,600.])
        newimg = (img-lungwin[0])/(lungwin[1]-lungwin[0])
        newimg[newimg<0]=0
        newimg[newimg>1]=1
        newimg = (newimg*255).astype('uint8')
        return newimg
    

      

      

      

      

      

  • 相关阅读:
    Visual Studio 2013 的 Xamarin 安装教程
    BeesCMS后台登录SQL报错注入
    Linux系统更改IP地址
    SSRF漏洞
    代码执行漏洞
    Python零碎的知识(持续更新)
    iptables
    WAF学习_(2)安装
    WAF学习_(1)Lua基础
    SSL协议
  • 原文地址:https://www.cnblogs.com/wzyuan/p/9618347.html
Copyright © 2011-2022 走看看