zoukankan      html  css  js  c++  java
  • Map Labeler (poj 2296 二分+2-SAT)

    Language:
    Map Labeler
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 1815   Accepted: 599

    Description

    Map generation is a difficult task in cartography. A vital part of such task is automatic labeling of the cities in a map; where for each city there is text label to be attached to its location, so that no two labels overlap. In this problem, we are concerned with a simple case of automatic map labeling. 

    Assume that each city is a point on the plane, and its label is a text bounded in a square with edges parallel to x and y axis. The label of each city should be located such that the city point appears exactly in the middle of the top or bottom edges of the label. In a good labeling, the square labels are all of the same size, and no two labels overlap, although they may share one edge. Figure 1 depicts an example of a good labeling (the texts of the labels are not shown.) 

    Given the coordinates of all city points on the map as integer values, you are to find the maximum label size (an integer value) such that a good labeling exists for the map. 

    Input

    The first line contains a single integer t (1 <= t <= 10), the number of test cases. Each test case starts with a line containing an integer m (3 ≤ m ≤ 100), the number of cities followed by m lines of data each containing a pair of integers; the first integer (X) is the x and the second one (Y) is the y coordinates of one city on the map (-10000 ≤X, Y≤ 10000). Note that no two cities have the same (x, y) coordinates.

    Output

    The output will be one line per each test case containing the maximum possible label size (an integer value) for a good labeling.

    Sample Input

    1
    6
    1 1
    2 3
    3 2
    4 4
    10 4
    2 5
    

    Sample Output

    2

    Source



    题意:平面上有n个点。每一个点画一个正方形而且该点要落在正方形上边或者下边的中间。问满足条件的最大正方形的边长是多少。

    思路:二分边长mid,建图用2-SAT作为推断条件。

    i表示画在上面。~i表示画在以下
    if|xi-xj|>=mid continue;
    else if |yi-yj|>=2*mid continue;
    else if |yi-yj|==0 then i->~j,~i->j,j->~i,~j->i;
    else if |yi-yj|>0 then ~i->i,j->~j;
    else |yi-yj|>=mid then j->i,~i->~j;

    代码:

    #include <iostream>
    #include <functional>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <string>
    #include <map>
    #include <stack>
    #include <vector>
    #include <set>
    #include <queue>
    #pragma comment (linker,"/STACK:102400000,102400000")
    #define pi acos(-1.0)
    #define eps 1e-6
    #define lson rt<<1,l,mid
    #define rson rt<<1|1,mid+1,r
    #define FRE(i,a,b)  for(i = a; i <= b; i++)
    #define FREE(i,a,b) for(i = a; i >= b; i--)
    #define FRL(i,a,b)  for(i = a; i < b; i++)
    #define FRLL(i,a,b) for(i = a; i > b; i--)
    #define mem(t, v)   memset ((t) , v, sizeof(t))
    #define sf(n)       scanf("%d", &n)
    #define sff(a,b)    scanf("%d %d", &a, &b)
    #define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
    #define pf          printf
    #define DBG         pf("Hi
    ")
    typedef long long ll;
    using namespace std;
    
    #define INF 0x3f3f3f3f
    #define mod 1000000009
    const int maxn = 1005;
    const int MAXN = 2005;
    const int MAXM = 20010;
    const int N = 1005;
    
    struct Node
    {
        int x,y;
    }node[MAXN];
    
    struct Edge
    {
        int to,next;
    }edge[MAXM];
    
    int tot,head[MAXN];
    int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];
    bool Instack[MAXN];
    int top,scc,Index;
    
    void init()
    {
        tot=0;
        memset(head,-1,sizeof(head));
    }
    
    void addedge(int u,int v)
    {
        edge[tot].to=v;
        edge[tot].next=head[u];
        head[u]=tot++;
    }
    
    void Tarjan(int u)
    {
        int v;
        Low[u]=DFN[u]=Index++;
        Instack[u]=true;
        Stack[top++]=u;
        for (int i=head[u];~i;i=edge[i].next)
        {
            int v=edge[i].to;
            if (!DFN[v])
            {
                Tarjan(v);
                if (Low[u]>Low[v]) Low[u]=Low[v];
            }
            else if (Instack[v]&&Low[u]>DFN[v])
                Low[u]=DFN[v];
        }
        if (Low[u]==DFN[u])
        {
            scc++;
            do{
                v=Stack[--top];
                Instack[v]=false;
                Belong[v]=scc;
            }while (v!=u);
        }
        return ;
    }
    
    bool solvable(int n)
    {
        memset(DFN,0,sizeof(DFN));
        memset(Instack,false,sizeof(Instack));
        top=scc=Index=0;
        for (int i=0;i<n;i++)
        {
            if (!DFN[i])
                Tarjan(i);
        }
        for (int i=0;i<n;i+=2)
        {
            if (Belong[i]==Belong[i^1])
                return false;
        }
        return true;
    }
    
    bool isok(int mid,int n)    //依据mid建图
    {
        init();
        for (int i=0;i<n;i++)
        {
            for (int j=i+1;j<n;j++)
            {
                if (abs(node[i].x-node[j].x)>=mid) continue;
                if (abs(node[i].y-node[j].y)>=2*mid) continue;
                if (node[i].y==node[j].y)
                {
                    addedge(2*i,2*j+1);
                    addedge(2*j+1,2*i);
                    addedge(2*j,2*i+1);
                    addedge(2*i+1,2*j);
                }
                else if (node[i].y-node[j].y>0&&node[i].y-node[j].y<mid)
                {
                    addedge(2*i+1,2*i);
                    addedge(2*j,2*j+1);
                }
                else if (node[j].y-node[i].y>0&&node[j].y-node[i].y<mid)
                {
                    addedge(2*j+1,2*j);
                    addedge(2*i,2*i+1);
                }
                else if (node[i].y-node[j].y>=mid)
                {
                    addedge(2*i+1,2*j+1);
                    addedge(2*j,2*i);
                }
                else if (node[j].y-node[i].y>=mid)
                {
                    addedge(2*j+1,2*i+1);
                    addedge(2*i,2*j);
                }
            }
        }
        if (solvable(2*n)) return true;
        return false;
    }
    
    void solve(int n)   //二分
    {
        int l=0,r=10000,ans;
        while (l<=r)
        {
    //        DBG;
            int mid=(l+r)>>1;
            if (isok(mid,n))
            {
    //            DBG;
                ans=mid;
                l=mid+1;
            }
            else r=mid-1;
        }
        printf("%d
    ",ans);
    }
    
    int main()
    {
    #ifndef ONLINE_JUDGE
        freopen("C:/Users/lyf/Desktop/IN.txt","r",stdin);
    #endif
        int i,j,t,m;
        scanf("%d",&t);
        while (t--)
        {
            scanf("%d",&m);
            for (i=0;i<m;i++)
                scanf("%d%d",&node[i].x,&node[i].y);
            solve(m);
        }
        return 0;
    }
    



  • 相关阅读:
    python之生成器
    flask_sqlalchemy filter 和filter_by的区别
    Linux 更新python至2.7后ImportError: No module named _ssl
    Linux pip 安装模块时,一直黄字错误:Could not find a version that satisfies the requirement
    Linux 创建python虚拟环境
    python 需求文件requirements.txt的创建及使用
    wget http://pypi.python.org/packages/source/s/setuptools/setuptools-2.0.tar.gz 下载时报错 ssl is required 解决办法
    结合daterangepicker实现Datatables表格带参数查询
    datatable 的ajax修改参数,post可以传参处理
    datatables 参数详解(转)
  • 原文地址:https://www.cnblogs.com/wzzkaifa/p/6786402.html
Copyright © 2011-2022 走看看