zoukankan      html  css  js  c++  java
  • Codeforces 193A. Cutting Figure


    看起来非常神,但仅仅有三种情况 -1 , 1 ,2.....

    A. Cutting Figure
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You've gotten an n × m sheet of squared paper. Some of its squares are painted. Let's mark the set of all painted squares as A. Set A is connected. Your task is to find the minimum number of squares that we can delete from set A to make it not connected.

    A set of painted squares is called connected, if for every two squares a and b from this set there is a sequence of squares from the set, beginning in a and ending in b, such that in this sequence any square, except for the last one, shares a common side with the square that follows next in the sequence. An empty set and a set consisting of exactly one square are connected by definition.

    Input

    The first input line contains two space-separated integers n and m (1 ≤ n, m ≤ 50) — the sizes of the sheet of paper.

    Each of the next n lines contains m characters — the description of the sheet of paper: the j-th character of the i-th line equals either "#", if the corresponding square is painted (belongs to set A), or equals "." if the corresponding square is not painted (does not belong to set A). It is guaranteed that the set of all painted squares A is connected and isn't empty.

    Output

    On the first line print the minimum number of squares that need to be deleted to make set A not connected. If it is impossible, print -1.

    Sample test(s)
    input
    5 4
    ####
    #..#
    #..#
    #..#
    ####
    
    output
    2
    
    input
    5 5
    #####
    #...#
    #####
    #...#
    #####
    
    output
    2
    
    Note

    In the first sample you can delete any two squares that do not share a side. After that the set of painted squares is not connected anymore.

    The note to the second sample is shown on the figure below. To the left there is a picture of the initial set of squares. To the right there is a set with deleted squares. The deleted squares are marked with crosses.





    /**
     * Created by ckboss on 14-10-8.
     */
    import java.util.*;
    
    public class CuttingFigure {
        static int n,m;
        static int[] dir_x = {0,0,1,-1};
        static int[] dir_y = {1,-1,0,0};
        static boolean[][] vis = new boolean[55][55];
        static char[][] map = new char[55][55];
        static boolean inmap(int x,int y){
            return (x>=0&&x<n)&&(y>=0&&y<m);
        }
    
        static void dfs(int x,int y){
            vis[x][y]=true;
            for(int i=0;i<4;i++){
                int X=dir_x[i]+x;
                int Y=dir_y[i]+y;
                if(inmap(X,Y)&&vis[X][Y]==false&&map[X][Y]=='#'){
                    dfs(X,Y);
                }
            }
        }
    
        static int CountNum(int x,int y){
            for(int i=0;i<55;i++) Arrays.fill(vis[i],false);
            if(inmap(x,y)) vis[x][y]=true;
            int cnt=0;
            for(int i=0;i<n;i++){
                for(int j=0;j<m;j++){
                    if(vis[i][j]==false&&map[i][j]=='#'){
                        dfs(i,j);
                        cnt++;
                    }
                }
            }
            return cnt;
        }
    
        public static void main(String[] args){
            Scanner in = new Scanner(System.in);
            n=in.nextInt(); m=in.nextInt();
            int nb=0;
            in.nextLine();
            for(int i=0;i<n;i++){
                String line = in.nextLine();
                for(int j=0;j<m;j++){
                    map[i][j]=line.charAt(j);
                    if(map[i][j]=='#') nb++;
                }
            }
            if(nb<3){
                System.out.println("-1");
                return ;
            }
            for(int i=0;i<n;i++){
                for(int j=0;j<m;j++){
                    if(CountNum(i,j)==1){
                        continue;
                    }
                    else {
                        System.out.println("1");
                        return ;
                    }
                }
            }
            System.out.println("2");
        }
    }
    



  • 相关阅读:
    TSP(Traveling Salesman Problem)-----浅谈旅行商问题(动态规划,回溯实现)
    浅谈Java虚拟机内存中的对象创建,内存布局,访问定位
    Java设计模式---桥接Bridge模式
    Java设计模式---Strategy策略模式
    Java设计模式---ChainOfResponsibility责任链模式
    《前端工程化体系设计与实践》-笔记
    React 16.x 新特性思维导图
    javascript语言精粹-笔记
    react+redux+Instagram
    链表
  • 原文地址:https://www.cnblogs.com/wzzkaifa/p/6788775.html
Copyright © 2011-2022 走看看