zoukankan      html  css  js  c++  java
  • hdu 5374 Tetris(模拟)

    题目链接:hdu 5374 Tetris


    模拟。每次进行操作时推断操作是否合法,合法才运行,否则跳过。每次一个token落地,推断一下是否有消除整行。


    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    
    using namespace std;
    
    /******* Token **********/
    const int C[3] = {1, 2, 4};
    const int T[3][4][4][2] = {
    	{{{0, 0}, {0, 1}, {1, 0}, {1, 1}}, {}, {}, {}}, 
    	{{{0, 0}, {0, 1}, {0, 2}, {0, 3}}, {{0, 0}, {1, 0}, {2, 0}, {3, 0}}, {}, {}},
    	{{{0, 0}, {0, 1}, {1, 0}, {2, 0}}, {{0, 0}, {0, 1}, {0, 2}, {1, 2}}, {{0, 1}, {1, 1}, {2, 0}, {2, 1}}, {{0, 0}, {1, 0}, {1, 1}, {1, 2}}}
    };
    
    void put (const int a[4][2]) {
    	int g[4][4];
    	memset(g, 0, sizeof(g));
    
    	for (int i = 0; i < 4; i++)
    		g[a[i][0]][a[i][1]] = 1;
    
    	for (int i = 3; i >= 0; i--) {
    		for (int j = 0; j < 4; j++)
    			printf("%c", g[j][i] ?

    '#' : '.'); printf(" "); } printf(" "); } /************************/ const int maxn = 1005; int N, M, P, B[maxn], G[15][15]; char order[maxn]; bool judge (int x, int y, const int t[4][2]) { for (int i = 0; i < 4; i++) { int p = x + t[i][0]; int q = y + t[i][1]; if (G[p][q]) return false; } return true; } void tag (int x, int y, const int t[4][2]) { for (int i = 0; i < 4; i++) { int p = x + t[i][0]; int q = y + t[i][1]; G[p][q] = 1; } } void play(int t) { int x = 4, y = 9, c = 0; while (P < M) { if (order[P] == 'w') { if (judge(x, y, T[t][(c + 1) % C[t]])) c = (c + 1) % C[t]; } else if (order[P] == 'a') { if (judge(x - 1, y, T[t][c])) x = x - 1; } else if (order[P] == 's') { if (judge(x, y - 1, T[t][c])) y = y - 1; } else if (order[P] == 'd') { if (judge(x + 1, y, T[t][c])) x = x + 1; } P++; if (!judge(x, y - 1, T[t][c])) break; y = y - 1; } tag(x, y, T[t][c]); } int remove () { int ret = 0; for (int j = 1; j <= 9; j++) { bool flag = true; for (int i = 1; i <= 9; i++) { if (G[i][j] == 0) { flag = false; break; } } if (flag) { ret++; for (int x = j; x < 12; x++) { for (int i = 1; i <= 9; i++) G[i][x] = G[i][x+1]; } j--; } } return ret; } int solve () { scanf("%d%s", &N, order); P = 0; M = strlen(order); memset(G, 0, sizeof(G)); for (int i = 0; i < 15; i++) G[i][0] = G[0][i] = G[10][i] = -1; int ret = 0, t; for (int i = 1; i <= N; i++) { scanf("%d", &t); play(t); ret += remove(); } return ret; } int main () { int cas; scanf("%d", &cas); for (int kcas = 1; kcas <= cas; kcas++) { printf("Case %d: %d ", kcas, solve ()); } return 0; }



  • 相关阅读:
    竞赛入门经典 3.2竖式问题
    竞赛入门经典 3-4竖式
    hdu 3547 (polya定理 + 小高精)
    浅入 dancing links x(舞蹈链算法)
    计算阶乘的另一些有趣的算法(转载)
    莫比乌斯反演
    STL的常用用法、函数汇总(不定时更新)
    博弈论的总结
    14年安徽省赛数论题etc.
    CCF 第六次计算机职业认证 第四题 收货 stl动态存储和fleury算法的综合应用
  • 原文地址:https://www.cnblogs.com/wzzkaifa/p/6805240.html
Copyright © 2011-2022 走看看