zoukankan      html  css  js  c++  java
  • leetcode -day17 Path Sum I II & Flatten Binary Tree to Linked List & Minimum Depth of Binary Tree

    1、
    

    Path Sum

    Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.

    For example:
    Given the below binary tree and sum = 22,

                  5
                 / 
                4   8
               /   / 
              11  13  4
             /        
            7    2      1
    

    return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22.

    分析,此题比較简单,採用深度优先策略。

    代码例如以下:

    class Solution {
    public:
        bool hasPathSum(TreeNode *root, int sum) {
            hasPath = false;
            if(root){
                int tempSum = 0;
                pathSumCore(root,tempSum,sum);
            }
            return hasPath;
        }
        void pathSumCore(TreeNode *root,int tempSum, int sum){
            if(hasPath){
                return;
            }
            tempSum += root->val;
            if(!root->left&&!root->right){
                if(tempSum == sum){
                    hasPath = true;
                }
                return;
            }
            if(root->left){
                pathSumCore(root->left,tempSum,sum);
            }
             if(root->right){
                pathSumCore(root->right,tempSum,sum);
            }
        }
        bool hasPath;
    };

    2、Path Sum II

    Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given sum.

    For example:
    Given the below binary tree and sum = 22,

                  5
                 / 
                4   8
               /   / 
              11  13  4
             /      / 
            7    2  5   1
    

    return

    [
       [5,4,11,2],
       [5,8,4,5]
    ]

    分析:此题也非常easy。常见题,跟上述不同的是保存路径。

    代码:

    class Solution {
    public:
        vector<vector<int> > pathSum(TreeNode *root, int sum) {
            if(root){
                int tempSum = 0;
                vector<int> path;
                pathSumCore(root,path,tempSum,sum);
            }
            return pathVec;
        }
        void pathSumCore(TreeNode* root,vector<int> path,int tempSum,int sum){
            tempSum += root->val;
            path.push_back(root->val);
            if(!root->left && !root->right){
                if(tempSum == sum){
                    pathVec.push_back(path);
                }
                return;
            }
            if(root->left){
                pathSumCore(root->left,path,tempSum,sum);
            }
            if(root->right){
                pathSumCore(root->right,path,tempSum,sum);
            }
        }
        vector<vector<int> > pathVec;
    };

    3、Flatten Binary Tree to Linked List

    Given a binary tree, flatten it to a linked list in-place.

    For example,
    Given

             1
            / 
           2   5
          /    
         3   4   6
    

    The flattened tree should look like:

       1
        
         2
          
           3
            
             4
              
               5
                
                 6
    

    click to show hints.

    Hints:

    If you notice carefully in the flattened tree, each node's right child points to the next node of a pre-order traversal.

    分析:上述提示能够看出,相当于二叉树的先序遍历,对每个结点,先訪问根结点,再先序遍历左子树。串在根结点的右孩子上,再先序遍历原右子树,继续串在右孩子上。

    代码例如以下:

    class Solution {
    public:
        void flatten(TreeNode *root) {
            if(root){
                preOrder(root);
            }
        }
        TreeNode *preOrder(TreeNode *root){
            if(!root->left && !root->right){
                return root;
            }
            TreeNode *lastNode = NULL;
            TreeNode *rightNode = root->right;
            //TreeNode *leftNode = root->left;
            if(root->left){
                root->right = root->left;
                lastNode = preOrder(root->left);
                root->left = NULL;
                lastNode->right = rightNode;
            }
            if(rightNode){
                lastNode = preOrder(rightNode);
            }
            return lastNode;
        }
    };


    4、Minimum Depth of Binary Tree

    Given a binary tree, find its minimum depth.

    The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.

    分析:此题非常easy,递归。

    class Solution {
    public:
        int minDepth(TreeNode *root) {
            if(!root){
                return 0;
            }
            n_minDepth = INT_MAX;
            int tempDepth = 0;
            minDepthCore(root,tempDepth);
            return n_minDepth;
        }
        void minDepthCore(TreeNode *root,int tempDepth){
            ++tempDepth;
            if(tempDepth >= n_minDepth){
                return;
            }
            if(!root->left && !root->right){
                if(tempDepth < n_minDepth){
                    n_minDepth = tempDepth;
                }
                return;
            }
            if(root->left){
                minDepthCore(root->left,tempDepth);
            }
            if(root->right){
                minDepthCore(root->right,tempDepth);
            }
        }
        int n_minDepth;
    };



  • 相关阅读:
    Java 分布式系统 实现session共享
    MySQL 大数据量使用limit分页,随着页码的增大,查询效率越低下。
    Linux下安装Zookeeper
    Mysql Window 下安装
    Spring Boot 教程demo
    全文搜索引擎 Elasticsearch (三)logstash-input-jdbc同步数据 到elasticsearch
    全文搜索引擎 Elasticsearch (二) 使用场景
    67.基于nested object实现博客与评论嵌套关系
    66.基于共享锁和排他锁实现悲观锁并发控制
    65.基于document锁实现悲观锁并发控制
  • 原文地址:https://www.cnblogs.com/wzzkaifa/p/7194234.html
Copyright © 2011-2022 走看看