zoukankan      html  css  js  c++  java
  • 2015 Astar Contest

    1001 数长方形

    题目大意

    平面内有N条平行于坐标轴的线段,且不会在端点处相交
    问共形成多少个矩形

    算法思路

    枚举4条线段的全部组合。分别作为矩形四条边。推断是否合法

    时间复杂度: O(N4)

    代码

    /**
     * Copyright © 2015 Authors. All rights reserved.
     * 
     * FileName: A.cpp
     * Author: Beiyu Li <sysulby@gmail.com>
     * Date: 2015-06-06
     */
    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #include <complex>
    
    using namespace std;
    
    #define rep(i,n) for (int i = 0; i < (n); ++i)
    #define For(i,s,t) for (int i = (s); i <= (t); ++i)
    #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
    
    typedef long long LL;
    typedef pair<int, int> Pii;
    
    const int inf = 0x3f3f3f3f;
    const LL infLL = 0x3f3f3f3f3f3f3f3fLL;
    
    typedef complex<int> Point;
    #define X real()
    #define Y imag()
    
    const int maxn = 25 + 5;
    
    int n;
    Point s[maxn], t[maxn];
    bool o[maxn];
    
    bool inter(int i, int j)
    {
            if (s[j].Y >= s[i].Y || t[j].Y <= s[i].Y) return false;
            return s[i].X < s[j].X && s[j].X < t[i].X;
    }
    
    bool check(int d, int u, int l, int r)
    {
            if (!inter(d, l)) return false;
            if (!inter(d, r)) return false;
            if (!inter(u, l)) return false;
            if (!inter(u, r)) return false;
            return true;
    }
    
    int main()
    {
            int T, cas = 0;
            scanf("%d", &T);
    
            while (T--) {
                    scanf("%d", &n);
                    rep(i,n) {
                            int x1, y1, x2, y2;
                            scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
                            if (x1 > x2) swap(x1, x2);
                            if (y1 > y2) swap(y1, y2);
                            s[i] = Point(x1, y1);
                            t[i] = Point(x2, y2);
                            o[i] = (x1 == x2);
                    }
                    int res = 0;
                    rep(d,n) if (!o[d]) rep(u,n) if (u > d && !o[u]) {
                            rep(l,n) if (o[l]) rep(r,n) if (r > l && o[r]) {
                                    if (check(d, u, l, r)) ++res;
                            }
                    }
                    printf("Case #%d:
    ", ++cas);
                    printf("%d
    ", res);
            }
    
            return 0;
    }

    1002 弹吉他

    题目大意

    给出N个和弦须要按下的弦与品。每一个和弦能够选择某种手势
    序号大的手指所处的品位不能小于序号小的手指
    移动某个手指的代价为曼哈顿距离,问依次弹出这N个和弦的最小代价

    算法思路

    DP,每一个和弦最多有4!种手势
    状态f[i][S]表示S相应的手势弹奏第i个和弦后,花费的最小代价
    状态转移:f[i][S] = min{f[i-1][S0] + dis(S0, S)}
    当中S能够直接存在4维数组中。注意检查手势是否合法

    时间复杂度: O(N×4!2)

    代码

    /**
     * Copyright © 2015 Authors. All rights reserved.
     * 
     * FileName: B.cpp
     * Author: Beiyu Li <sysulby@gmail.com>
     * Date: 2015-06-06
     */
    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #include <cstdlib>
    
    using namespace std;
    
    #define rep(i,n) for (int i = 0; i < (n); ++i)
    #define For(i,s,t) for (int i = (s); i <= (t); ++i)
    #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
    
    typedef long long LL;
    typedef pair<int, int> Pii;
    
    const int inf = 0x3f3f3f3f;
    const LL infLL = 0x3f3f3f3f3f3f3f3fLL;
    
    const int maxn = 5000 + 5;
    
    int n;
    Pii p[maxn][4];
    int f[maxn][4][4][4][4];
    
    bool check(int k, int y[])
    {
            rep(i,4) rep(j,4) if (j > i)
                    if (p[k][y[i]].second > p[k][y[j]].second) return false;
            return true;
    }
    
    int dis(int i, int x, int y)
    {
            int dx = p[i][x].first - p[i+1][y].first;
            int dy = p[i][x].second - p[i+1][y].second;
            return abs(dx) + abs(dy);
    }
    
    int solve()
    {
            int x[4], y[4];
            memset(f, 0x3f, sizeof(f));
            f[0][0][1][2][3] = 0;
            rep(i,n) {
                    rep(j,4) x[j] = j;
                    do {
                            int t = f[i][x[0]][x[1]][x[2]][x[3]];
                            if (t == inf) continue;
                            rep(j,4) y[j] = j;
                            do {
                                    if (!check(i + 1, y)) continue;
                                    int r = t;
                                    rep(j,4) r += dis(i, x[j], y[j]);
                                    int &res = f[i+1][y[0]][y[1]][y[2]][y[3]];
                                    res = min(res, r);
                            } while (next_permutation(y , y + 4));
                    } while (next_permutation(x, x + 4));
            }
            int res = inf;
            rep(j,4) x[j] = j;
            do {
                    res = min(res, f[n][x[0]][x[1]][x[2]][x[3]]);
            } while (next_permutation(x, x + 4));
            return res;
    }
    
    int main()
    {
            int T, cas = 0;
            scanf("%d", &T);
    
            while (T--) {
                    scanf("%d", &n);
                    rep(j,4) p[0][j] = Pii(0, j + 1);
                    For(i,1,n) rep(j,4)
                            scanf("%d%d", &p[i][j].first, &p[i][j].second);
                    printf("Case #%d:
    ", ++cas);
                    printf("%d
    ", solve());
            }
    
            return 0;
    }

    1003 行路难

    题目大意

    给出一张有向图,边权为字符串。找出指定起点到终点,字典序最小的路径
    假设不存在或长度为无穷,则输出”Tough way!”

    算法思路

    最短路。对于我的实现方法。须要从终点向起点松弛
    因为假设从起点開始,对于某个字符串是还有一个串前缀的情况。无法确定保留哪个
    为了避免负环对spfa队列的影响,这里使用bellman-ford算法

    • 当起点在n-1次松弛后被更新,则答案无限长
    • 松弛6n次后起点答案不再变化

    以下给出粗略的证明:

    因为最短路上最多有n-1条边。所以n-1次松弛后。更新一定引入重边,由此能够构造负环

    而假设最短路上不存在负环,则n-1条边构成的字符串最长为6(n-1)
    超过6n次松弛后,负环的长度肯定超过6(n-1)。假设没有更新过起点,就再也不会更新了
    至于为什么至少须要6n。能够參考下图
    例子

    时间复杂度: O(VE)

    代码

    /**
     * Copyright © 2015 Authors. All rights reserved.
     * 
     * FileName: C.cpp
     * Author: Beiyu Li <sysulby@gmail.com>
     * Date: 2015-06-06
     */
    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #include <string>
    
    using namespace std;
    
    #define rep(i,n) for (int i = 0; i < (n); ++i)
    #define For(i,s,t) for (int i = (s); i <= (t); ++i)
    #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
    
    typedef long long LL;
    typedef pair<int, int> Pii;
    
    const int inf = 0x3f3f3f3f;
    const LL infLL = 0x3f3f3f3f3f3f3f3fLL;
    
    const int maxn = 50 + 5;
    const int maxe = 500 + 5;
    
    int psz;
    struct Edge {
            int u, v;
            string w;
            Edge *next;
    } epool[maxe];
    
    void add_edge(int u, int v, string w)
    {
            Edge *p = epool + psz++;
            p->u = u; p->v = v; p->w = w;
    }
    
    int n, m, s, t;
    string dis[maxn];
    bool vis[maxn];
    
    string bellman_ford()
    {
            int clk = 0;
            memset(vis, false, sizeof(vis));
            dis[t] = ""; vis[t] = true;
            while (true) {
                    bool update = false;
                    for (Edge *i = epool; i < epool + psz; ++i) if (vis[i->v]) {
                            int u = i->u, v = i->v;
                            string tmp = i->w + dis[v];
                            if (!vis[u] || tmp < dis[u]) {
                                    dis[u] = tmp;
                                    update = vis[u] = true;
                                    if (clk >= n - 1 && u == s) return "Tough way!";
                            }
                    }
                    if (!update || ++clk > n * 6) break;
            }
            return vis[s]? dis[s]: "Tough way!";
    }
    
    int main()
    {
            int T, cas = 0;
            scanf("%d", &T);
    
            while (T--) {
                    psz = 0;
                    scanf("%d%d%d%d", &n, &m, &s, &t);
                    while (m--) {
                            int u, v;
                            char buf[8];
                            scanf("%d%d%s", &u, &v, buf);
                            add_edge(u, v, buf);
                    }
                    printf("Case #%d:
    ", ++cas);
                    puts(bellman_ford().c_str());
            }
    
            return 0;
    }

    1004 蜀道难

    题目大意

    有N座山均匀分布在圆周上,相邻两座山之间的弧长为R,找出距离最远的两个山顶
    当中山顶的距离为两座山的高度和,加上两座山沿圆弧的最短距离

    算法思路

    维护连续区间最值
    将环复制一遍后变成链上的问题,不难发现,离某座山最远的山一定在它的前面的N/2座中
    所以向右遍历每座山的同一时候。维护向前N/2宽度的区间内的最值。加上当前山的高度更新答案
    而将当前高度H插入区间时。须要将区间内的值统一加上R
    能够记录一个总的增量D,将H - D插入区间,再将D累加R
    这样区间内的大小关系不变,而此时的最值仅仅须要加上D,便可得到实际值
    以下的代码中。使用了单调队列维护这一最值

    时间复杂度: O(N)

    代码

    /**
     * Copyright © 2015 Authors. All rights reserved.
     * 
     * FileName: D.cpp
     * Author: Beiyu Li <sysulby@gmail.com>
     * Date: 2015-06-06
     */
    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #include <queue>
    
    using namespace std;
    
    #define rep(i,n) for (int i = 0; i < (n); ++i)
    #define For(i,s,t) for (int i = (s); i <= (t); ++i)
    #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
    
    typedef long long LL;
    typedef pair<int, int> Pii;
    
    const int inf = 0x3f3f3f3f;
    const LL infLL = 0x3f3f3f3f3f3f3f3fLL;
    
    typedef pair<int, LL> Pil;
    
    const int maxn = 100000 + 5;
    
    int n, r, l;
    int h[maxn*2];
    
    struct Queue {
            LL d;
            deque<Pil> deq;
            void clear() { d = 0; deq.clear(); }
            void push(int i)
            {
                    while (!deq.empty() && h[i] > deq.back().second + d)
                            deq.pop_back();
                    deq.push_back(Pii(i, h[i] - d)); d += r;
            }
            Pil query()
            {
                    Pil res = deq.front(); res.second += d;
                    return res;
            }
            void pop(int i)
            {
                    if (!deq.empty() && deq.front().first == i)
                            deq.pop_front();
            }
    } que;
    
    int main()
    {
            int T, cas = 0;
            scanf("%d", &T);
    
            while (T--) {
                    scanf("%d%d", &n, &r);
                    l = n / 2;
                    rep(i,n) scanf("%d", &h[i]), h[n+i] = h[i];
                    que.clear();
                    rep(i,l) que.push(i);
                    LL res = 0; Pii resp;
                    for (int i = l; i < 2 * n; ++i) {
                            LL v = que.query().second + h[i];
                            Pii p = Pii(i % n, que.query().first % n);
                            if (p.first > p.second) swap(p.first, p.second);
                            if (v > res) {
                                    res = v; resp = p;
                            } else if (v == res) {
                                    resp = min(resp, p);
                            }
                            que.pop(i - l);
                            que.push(i);
                    }
                    printf("Case #%d:
    ", ++cas);
                    printf("%d %d
    ", resp.first + 1, resp.second + 1);
            }
    
            return 0;
    }

    1005 最强password

    题目大意

    给出一个“password生成串”
    找到一个“最强password”,不是这个“password生成串”的子序列,而且长度最短
    统计“最强password”的个数

    算法思路

    DP
    f[i]表示不是“原串以i结尾前缀”的子序列的最短字符串的长度
    g[i]是上述字符串的个数
    维护i前面每一个字符最后出现的位置last[]
    若存在未出现的字符,则
    f[i] = 1
    g[i] = 未出现的字符个数
    否则
    f[i] = min{f[last[j]]} + 1
    g[i] = sum{g[last[j]] | f[[last[j]] + 1 == f[i]}
    上式的含义为,i之前,以各个字母结尾的,长度为f[i]-1的password串个数的累加

    时间复杂度: O(26N)

    代码

    /**
     * Copyright © 2015 Authors. All rights reserved.
     * 
     * FileName: E.cpp
     * Author: Beiyu Li <sysulby@gmail.com>
     * Date: 2015-06-06
     */
    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #include <vector>
    
    using namespace std;
    
    #define rep(i,n) for (int i = 0; i < (n); ++i)
    #define For(i,s,t) for (int i = (s); i <= (t); ++i)
    #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
    
    typedef long long LL;
    typedef pair<int, int> Pii;
    
    const int inf = 0x3f3f3f3f;
    const LL infLL = 0x3f3f3f3f3f3f3f3fLL;
    
    const int mod = 1000000007;
    const int maxn = 100000 + 5;
    
    int n;
    char s[maxn];
    int last[26];
    int f[maxn], g[maxn];
    
    int main()
    {
            int T, cas = 0;
            scanf("%d", &T);
    
            while (T--) {
                    scanf("%s", s);
                    n = strlen(s);
                    memset(last, -1, sizeof(last));
                    For(i,0,n) {
                            vector<int> vec;
                            rep(j,26) if (~last[j]) vec.push_back(last[j]);
                            if (i < n) last[s[i]-'a'] = i;
                            if (vec.size() < 26) {
                                    f[i] = 1;
                                    g[i] = 26 - vec.size();
                            } else {
                                    int t = inf;
                                    foreach(it,vec) t = min(t, f[*it]);
                                    f[i] = t + 1;
                                    g[i] = 0;
                                    foreach(it,vec) if (f[*it] == t)
                                            g[i] = (g[i] + g[*it]) % mod;
                            }
                    }
                    printf("Case #%d:
    ", ++cas);
                    printf("%d %d
    ", f[n], g[n]);
            }
    
            return 0;
    }

    1006 平衡大师

    题目大意

    对一张N个点的有向图进行删边。使得每一个点“入度减出度绝对值”的最大值最小
    要求至少保留K条边

    算法思路

    费用流

    先考虑最大流
    对于有向图,存在总入度等于总出度这一性质,类比于网络流中的流量平衡
    因此。从源点向入度大于出度的点连边,而入度小于出度的点连向汇点
    因为要达到最大流。前者尽量向网络中流出,而后者则尽量从网络中流入
    至于费用
    假设给网络中每条边加上为1的费用。则通过网络的流量须要花费代价

    回到本题。能够二分每一个点“入度减出度绝对值”的最大值
    对于不超过这个值的流量。能够建立一个暂时节点,免费将流量流向此处,或从此处获取流量
    而对于超出的部分,依旧仅仅能走网络中通过,带来的费用相当于须要删除的边
    此时二分的推断条件为,删除等量于最大流最小费用的边后,是否还留有至少K条边

    时间复杂度: O(logV×kVE)

    代码

    /**
     * Copyright © 2015 Authors. All rights reserved.
     * 
     * FileName: F.cpp
     * Author: Beiyu Li <sysulby@gmail.com>
     * Date: 2015-06-06
     */
    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #include <string>
    #include <queue>
    #include <map>
    
    using namespace std;
    
    #define rep(i,n) for (int i = 0; i < (n); ++i)
    #define For(i,s,t) for (int i = (s); i <= (t); ++i)
    #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
    
    typedef long long LL;
    typedef pair<int, int> Pii;
    
    const int inf = 0x3f3f3f3f;
    const LL infLL = 0x3f3f3f3f3f3f3f3fLL;
    
    const int maxn = 50 + 5;
    const int maxe = 10000 + 5;
    
    class Cost_flow {
            int n, psz;
            struct Edge {
                    int u, v, r, c;
                    Edge *next, *cp;
            } epool[maxe], *e[maxn];
            int s, t, dist, cost;
            int dis[maxn];
            bool inq[maxn], vis[maxn];
    
            bool modlable()
            {
                    deque<int> deq;
                    memset(dis, 0x3f, sizeof(dis));
                    memset(inq, false, sizeof(inq));
                    dis[t] = 0; inq[t] = true; deq.push_back(t);
                    while (!deq.empty()) {
                            int u = deq.front(); deq.pop_front(); inq[u] = false;
                            for (Edge *i = e[u]; i; i = i->next) if (i->cp->r) {
                                    int v = i->v;
                                    if (dis[v] <= dis[u] - i->c) continue;
                                    dis[v] = dis[u] - i->c;
                                    if (inq[v]) continue; inq[v] = true;
                                    deq.empty() || dis[v] < dis[deq.front()]?

    deq.push_front(v): deq.push_back(v); } } for (int u = 0; u < n; ++u) for (Edge *i = e[u]; i; i = i->next) i->c += dis[i->v] - dis[u]; dist += dis[s]; return dis[s] < inf; } int aug(int u, int m) { if (u == t) return cost += dist * m, m; int f = 0; vis[u] = true; for (Edge *i = e[u]; i; i = i->next) { int v = i->v; if (i->r && !i->c && !vis[v]) { int d = aug(v, min(i->r, m)); i->r -= d; i->cp->r += d; m -= d; f += d; if (!m) break; } } return f; } public: void init(int n) { this->n = n; psz = 0; memset(e, 0, sizeof(e)); } void add_edge(int u, int v, int w, int c) { Edge *i = epool + psz; i->v = v; i->r = w; i->c = c; i->next = e[u]; e[u] = i; i->cp = epool + (psz++ ^ 1); if (psz & 1) add_edge(v, u, 0, -c); } int min_cost(int s, int t, int &flow) { this->s = s; this->t = t; dist = cost = flow = 0; while (modlable()) { int d; do { memset(vis, false, sizeof(vis)); flow += (d = aug(s, inf)); } while (d); } return cost; } } grp; int n, m, k, tot; int u[maxe], v[maxe], deg[maxn]; map<string, int> id; int get_id(string s) { if (id.count(s)) return id[s]; return id[s] = tot++; } bool check(int c) { grp.init(n + 3); int src = n, trg = n + 1, tmp = n + 2; rep(i,m) grp.add_edge(u[i], v[i], 1, 1); rep(i,n) { if (deg[i] > 0) { grp.add_edge(src, i, deg[i], 0); grp.add_edge(i, tmp, c, 0); } if (deg[i] < 0) { grp.add_edge(i, trg, -deg[i], 0); grp.add_edge(tmp, i, c, 0); } } return m - grp.min_cost(src, trg, tmp) >= k; } int main() { int T, cas = 0; scanf("%d", &T); while (T--) { scanf("%d%d%d", &n, &m, &k); tot = 0; id.clear(); memset(deg, 0, sizeof(deg)); rep(i,m) { char s[24]; scanf("%s", s); u[i] = get_id(s); scanf("%s", s); v[i] = get_id(s); ++deg[u[i]], --deg[v[i]]; } int l = 0, r = n; while (l < r) { int mid = (l + r) >> 1; if (check(mid)) r = mid; else l = mid + 1; } printf("Case #%d: ", ++cas); printf("%d ", r); } return 0; }


  • 相关阅读:
    浅谈三层架构
    尺度空间(Scale space)理论
    漫游Kafka实现篇之消息和日志
    杭电 2095
    .net调用Outlook 批量发送邮件,可指定Outlook中的账号来发送邮件
    Java实现 蓝桥杯VIP 算法提高 计算时间
    Java实现 蓝桥杯VIP 算法提高 计算时间
    Java实现 蓝桥杯VIP 算法提高 计算时间
    Java实现 蓝桥杯VIP 算法提高 计算时间
    Java实现 蓝桥杯VIP 算法提高 最小乘积(提高型)
  • 原文地址:https://www.cnblogs.com/wzzkaifa/p/7220250.html
Copyright © 2011-2022 走看看