zoukankan      html  css  js  c++  java
  • 高级同步器:可重用的同步屏障Phaser

    引自:https://shift-alt-ctrl.iteye.com/blog/2302923

    在JAVA 1.7引入了一个新的并发API:Phaser,一个可重用的同步barrier。在此前,JAVA已经有CyclicBarrier、CountDownLatch这两种同步barrier,但是Phaser更加灵活,而且侧重于“重用”。

    一、简述

        1、注册机制:与其他barrier不同的是,Phaser中的“注册的同步者(parties)”会随时间而变化,Phaser可以通过构造器初始化parties个数,也可以在Phaser运行期间随时加入(register)新的parties,以及在运行期间注销(deregister)parties。运行时可以随时加入、注销parties,只会影响Phaser内部的计数器,它建立任何内部的bookkeeping(账本),因此task不能查询自己是否已经注册了,当然你可以通过实现子类来达成这一设计要求。

    Java代码  收藏代码
    1. //伪代码  
    2. Phaser phaser = new Phaser();  
    3. phaser.register();//parties count: 1  
    4. ....  
    5. phaser.arriveAndDeregister()://count : 0;  
    6. ....  

        此外,CyclicBarrier、CountDownLatch需要在初始化的构造函数中指定同步者的个数,且运行时无法再次调整。

    Java代码  收藏代码
    1. CountDownLatch countDownLatch = new CountDownLatch(12);  
    2. //count deregister parties after all  
    3. //parties count is 12 all the times  
    4. //if you want change the number of parties, you should create a new instance.  
    5. CyclicBarrier cyclicBarrier = new CyclicBarrier(12);  

        2、同步机制:类似于CyclicBarrier,Phaser也可以awaited多次,它的arrivedAndAwaitAdvance()方法的效果类似于CyclicBarrier的await()。Phaser的每个周期(generation)都有一个phase数字,phase 从0开始,当所有的已注册的parties都到达后(arrive)将会导致此phase数字自增(advance),当达到Integer.MAX_VALUE后继续从0开始。这个phase数字用于表示当前parties所处于的“阶段周期”,它既可以标记和控制parties的wait行为、唤醒等待的时机。

        1)Arrival:Phaser中的arrive()、arriveAndDeregister()方法,这两个方法不会阻塞(block),但是会返回相应的phase数字,当此phase中最后一个party也arrive以后,phase数字将会增加,即phase进入下一个周期,同时触发(onAdvance)那些阻塞在上一phase的线程。这一点类似于CyclicBarrier的barrier到达机制;更灵活的是,我们可以通过重写onAdvance方法来实现更多的触发行为。

        2)Waiting:Phaser中的awaitAdvance()方法,需要指定一个phase数字,表示此Thread阻塞直到phase推进到此周期,arriveAndAwaitAdvance()方法阻塞到下一周期开始(或者当前phase结束)。不像CyclicBarrier,即使等待Thread已经interrupted,awaitAdvance方法会继续等待。Phaser提供了Interruptible和Timout的阻塞机制,不过当线程Interrupted或者timout之后将会抛出异常,而不会修改Phaser的内部状态。如果必要的话,你可以在遇到此类异常时,进行相应的恢复操作,通常是在调用forceTermination()方法之后。

        Phaser通常在ForJoinPool中执行tasks,它可以在有task阻塞等待advance时,确保其他tasks的充分并行能力。

        3、中断(终止):Phaser可以进入Termination状态,可以通过isTermination()方法判断;当Phaser被终止后,所有的同步方法将会立即返回(解除阻塞),不需要等到advance(即advance也会解除阻塞),且这些阻塞方法将会返回一个负值的phase值(awaitAdvance方法、arriveAndAwaitAdvance方法)。当然,向一个termination状态的Phaser注册party将不会有效;此时onAdvance()方法也将会返回true(默认实现),即所有的parties都会被deregister,即register个数为0。

        4、Tiering(分层):Phaser可以“分层”,以tree的方式构建Phaser来降低“竞争”。如果一个Phaser中有大量parties,这会导致严重的同步竞争,所以我们可以将它们分组并共享一个parent Phaser,这样可以提高吞吐能力;Phaser中注册和注销parties都会有Child 和parent Phaser自动管理。当Child Phaser中中注册的parties变为非0时(在构造函数Phaser(Phaser parent,int parties),或者register()方法),Child Phaser将会注册到其Parent上;当Child Phaser中的parties变为0时(比如由arrivedAndDegister()方法),那么此时Child Phaser也将从其parent中注销出去。

        5、监控:同步的方法只会被register操作调用,对于当前state的监控方法可以在任何时候调用,比如getRegisteredParties()获取已经注册的parties个数,getPhase()获取当前phase周期数等;因为这些方法并非同步,所以只能反映当时的瞬间状态。

    二、常用的Barrier比较

        1、CountDownLatch

    Java代码  收藏代码
    //创建时,就需要指定参与的parties个数  
    int parties = 12;  
    CountDownLatch latch = new CountDownLatch(parties);  
    //线程池中同步task  
    ExecutorService executor = Executors.newFixedThreadPool(parties);  
    for(int i = 0; i < parties; i++) {  
        executor.execute(new Runnable() {  
            @Override  
            public void run() {  
                try {  
                    //可以在任务执行开始时执行,表示所有的任务都启动后,主线程的await即可解除  
                    //latch.countDown();  
                    //run  
                    //..  
                    Thread.sleep(3000);  
      
                } catch (Exception e) {  
      
                }  
                finally {  
                    //任务执行完毕后:到达  
                    //表示所有的任务都结束,主线程才能继续  
                    latch.countDown();  
                }  
            }  
        });  
    }  
    latch.await();//主线程阻塞,直到所有的parties到达  
    //latch上所有的parties都达到后,再次执行await将不会有效,  
    //即barrier是不可重用的  
    executor.shutdown();  

        2、CyclicBarrier

    Java代码  收藏代码
    //创建时,就需要指定参与的parties个数  
    int parties = 12;  
    CyclicBarrier barrier = new CyclicBarrier(parties);  
    //线程池中同步task  
    ExecutorService executor = Executors.newFixedThreadPool(parties);  
    for(int i = 0; i < parties; i++) {  
        executor.execute(new Runnable() {  
            @Override  
            public void run() {  
                try {  
                    int i = 0;  
                    while (i < 3 && !barrier.isBroken()) {  
                        System.out.println("generation begin:" + i + ",tid:" + Thread.currentThread().getId());  
                        Thread.sleep(3000);  
                        //如果所有的parties都到达,则开启新的一次周期(generation)  
                        //barrier可以被重用  
                        barrier.await();  
                        i++;  
                    }  
      
                } catch (Exception e) {  
                    e.printStackTrace();  
                }  
                finally {  
      
                }  
            }  
        });  
    }  
    Thread.sleep(100000);  

        3、Phaser

    Java代码  收藏代码
    package com.thread;
    
    import java.util.concurrent.ExecutorService;
    import java.util.concurrent.Executors;
    import java.util.concurrent.Phaser;
    
    /**
     * 同步器:Phaser,可重用的同步屏障
     * @author Administrator
     *
     */
    public class PhaserTest {
    
        public static void main(String[] args) {
    
            // 创建时,就需要指定参与的parties个数
            // 可以在创建时不指定parties
            // 而是在运行时,随时注册和注销新的parties
            int parties = 12;
            
            Phaser phaser = new Phaser();
            // 主线程先注册一个
            // 对应下文中,主线程可以等待所有的parties到达后再解除阻塞(类似与CountDownLatch)
            phaser.register();
            ExecutorService executor = Executors.newFixedThreadPool(parties);
            for (int i = 0; i < parties; i++) {
                phaser.register();// 每创建一个task,我们就注册一个party
                executor.execute(new Runnable() {
                    @Override
                    public void run() {
                        try {
                            int i = 0;
                            while (i < 3 && !phaser.isTerminated()) {
                                //getPhase()获取当前phase周期数
                                System.out.println("Generation:" + phaser.getPhase());
                                Thread.sleep(3000);
                                // 等待同一周期内,其他Task到达
                                // 然后进入新的周期,并继续同步进行
                                phaser.arriveAndAwaitAdvance();
                                i++;// 我们假定,运行三个周期即可
                            }
                        } catch (Exception e) {
    
                        } finally {
                            phaser.arriveAndDeregister();
                        }
                    }
                });
            }
            // 主线程到达,且注销自己
            // 此后线程池中的线程即可开始按照周期,同步执行。
            phaser.arriveAndDeregister();
            executor.shutdown();
        }
    }

    三、API简述

         1、Phaser():构造函数,创建一个Phaser;默认parties个数为0。此后我们可以通过register()、bulkRegister()方法来注册新的parties。每个Phaser实例内部,都持有几个状态数据:termination状态、已经注册的parties个数(registeredParties)、当前phase下已到达的parties个数(arrivedParties)、当前phase周期数,还有2个同步阻塞队列Queue。Queue中保存了所有的waiter,即因为advance而等待的线程信息;这两个Queue分别为evenQ和oddQ,这两个Queue在实现上没有任何区别,Queue的元素为QNode,每个QNode保存一个waiter的信息,比如Thread引用、阻塞的phase、超时的deadline、是否支持interrupted响应等。两个Queue,其中一个保存当前phase中正在使用的waiter,另一个备用,当phase为奇数时使用evenQ、oddQ备用,偶数时相反,即两个Queue轮换使用。当advance事件触发期间,新register的parties将会被放在备用的Queue中,advance只需要响应另一个Queue中的waiters即可,避免出现混乱。

        2、Phaser(int parties):构造函数,初始一定数量的parties;相当于直接regsiter此数量的parties。

        3、arrive():到达,阻塞,等到当前phase下其他parties到达。如果没有register(即已register数量为0),调用此方法将会抛出异常,此方法返回当前phase周期数,如果Phaser已经终止,则返回负数。

        4、arriveAndDeregister():到达,并注销一个parties数量,非阻塞方法。注销,将会导致Phaser内部的parties个数减一(只影响当前phase),即下一个phase需要等待arrive的parties数量将减一。异常机制和返回值,与arrive方法一致。

        5、arriveAndAwaitAdvance():到达,且阻塞直到其他parties都到达,且advance。此方法等同于awaitAdvance(arrive())。如果你希望阻塞机制支持timeout、interrupted响应,可以使用类似的其他方法(参见下文)。如果你希望到达后且注销,而且阻塞等到当前phase下其他的parties到达,可以使用awaitAdvance(arriveAndDeregister())方法组合。此方法的异常机制和返回值同arrive()。

        6、awaitAdvance(int phase):阻塞方法,等待phase周期数下其他所有的parties都到达。如果指定的phase与Phaser当前的phase不一致,则立即返回。

        7、awaitAdvanceInterruptibly(int phase):阻塞方法,同awaitAdvance,只是支持interrupted响应,即waiter线程如果被外部中断,则此方法立即返回,并抛出InterrutedException。

        8、awaitAdvanceInterruptibly(int phase,long timeout,TimeUnit unit):阻塞方法,同awaitAdvance,支持timeout类型的interrupted响应,即当前线程阻塞等待约定的时长,超时后以TimeoutException异常方式返回。

        9、forceTermination():强制终止,此后Phaser对象将不可用,即register等将不再有效。此方法将会导致Queue中所有的waiter线程被唤醒。

        10、register():新注册一个party,导致Phaser内部registerPaties数量加1;如果此时onAdvance方法正在执行,此方法将会等待它执行完毕后才会返回。此方法返回当前的phase周期数,如果Phaser已经中断,将会返回负数。

        11、bulkRegister(int parties):批量注册多个parties数组,规则同10、。

        12、getArrivedParties():获取已经到达的parties个数。

        13、getPhase():获取当前phase周期数。如果Phaser已经中断,则返回负值。

        14、getRegisteredParties():获取已经注册的parties个数。

        15、getUnarrivedParties():获取尚未到达的parties个数。

        16、onAdvance(int phase,int registeredParties):这个方法比较特殊,表示当进入下一个phase时可以进行的事件处理,如果返回true表示此Phaser应该终止(此后将会把Phaser的状态为termination,即isTermination()将返回true。),否则可以继续进行。phase参数表示当前周期数,registeredParties表示当前已经注册的parties个数。

        默认实现为:return registeredParties == 0;在很多情况下,开发者可以通过重写此方法,来实现自定义的advance时间处理机制。

        内部原理,比较简单(简述):

        1)两个计数器:分别表示parties个数和当前phase。register和deregister会触发parties变更(CAS),全部parties到达(arrive)会触发phase变更。

        2)一个主要的阻塞队列:非AQS实现,对于arriveAndWait的线程,会被添加到队列中并被park阻塞,知道当前phase中最后一个party到达后触发唤醒。

  • 相关阅读:
    通知
    KVO详解
    KVC详解
    KVC/KVO总结
    结构体Struct
    检测文件(夹)大小
    NSFileHandle&&NSFileManage
    ***NSFileManager
    获取文件扩展名
    MySql数据库_03
  • 原文地址:https://www.cnblogs.com/x-jingxin/p/10655164.html
Copyright © 2011-2022 走看看